Device Passthrough to
Driver Domain in Xen

Passthrough. List of terms.

e Passthrough: the process of passing access to DomD via Dom0

e Dom0: Domain 0, a privileged domain

e DombD: Driver Domain, a domain with hardware drivers that has access to real
devices

Passthrough: why do we need it?

As we all know, one of the most common sources of OS crashes are hardware drivers and
the issues with them. On systems with visualization, it seems logical to create a separate
domain and place hardware drivers (or at least the buggiest of them) there. All other
domains that need access to these devices should use special "frontend drivers" that do
not have direct access to the hardware but instead connect to "backends" in the driver
domain. These backends manage access and redirect all requests via hardware drivers to
the appropriate devices.

A system with this type of configuration becomes much more stable. If panic occurs in the
driver domain, it gets rebooted. All other parts of a system stay functional. Although the
system may lose some hardware functionality during the driver domain reboot, this
functionality gets restored when the DomD with backends is online again. Xen provides
examples of creating a Network Domain (i.e., a domain with network drivers and access to
network devices) and a Block Device Domain (i.e., a domain with block device drivers and
access to block devices). Also, PCl devices can passthrough to PV domains.

One of the most significant tasks of creating a system with such a driver domain is to
correctly provide it with resources (e.g., |0 memory, IRQs). For example, in order to create
a driver domain with all (or almost all) peripheral devices of ARM SoC for an automotive
solution, we have to grant DomD with access to IO memories and IRQs of about 50-100
devices.

‘ Device 1 ‘ ‘ Device 2 ‘ ‘ Device 3 ‘

v v L4
[HW Driver 1] [HW Driverz] [HW Driver 3]

Y Y

DomO DomD DomU

v v
| [:“uf Backend 1 W Backend 2] {:‘V Backend 3] [F"-.-’ Frontend 1] [F"u’ Frontend 2] [F"‘.-’ Frontend 3]

x Y b 3 b L3

‘-"'\-._

~ : =

Access to
Devices 1,2, 3

| Access o
Devices 1,2, 3 A

XEN

Example of System with Driver Domain based on Xen Hypervisor

Passthrough: what do we want?

The main idea of passthrough is to grant access for DomD through Dom0. The best
solution is just to mark which device should be assigned to which domain. It can be
implemented by adding a special field to device tree nodes. Then, while constructing
Dom0, Xen leaves nodes without this field unchanged and grants I0-mems and IRQs to
them. It removes nodes (with all fields and child nodes) with a "xen-passthrough" field from
a device tree and just grants them access to Dom0. When Dom0O initiates DomD
construction, the initial device tree is parsed again, and all nodes that don't have a
"xen-passthrough" field with the name of an appropriate domain and don't have such
children are removed.

In this way, all redundant nodes are filtered. I0-mems and IRQs are then mapped for any
nodes that remain after filtering. It is important to note that DomD resources mapping
should be not one-to-one. New virtual addresses and IRQs are substituted in the "reg" and
"irg" fields of the appropriate device nodes.

There may be some places in the kernel where access to a device is provided via
hardcoded addresses rather than values from the device tree. You should change such

places and use the right way (i.e., via a device tree). It is a fee for pure virtualization.
Alternatively, you can just directly map such regions via the "iomem=[]" command in the
DomD configuration file.

ARM architectural restriction means we can manage memory access only in the context of
memory pages. In other words, if we want to give access to DomD to some memory
region that is unaligned to page size, we have to give access to the whole page(s) that
contains this region. This is a security violation regardless of how you give access to
DombD, either via the "iomem=[]" command in the configuration file or via passthrough. The
below figure demonstrates how you can divide a single device tree into separate device
trees using Xen during domains construction.

reg=<REG 0> reg=<F!EEi_0>

irg=<IRQ_0= irg=<IRQ_0=>
NODE_1 NODE _1

reg=<REG_1> reg:e:REfi_b

NODE_1_0 e T —
reg=<REG_1_0> G 1
> irg=<IRQ_1_0>

reg=<REG_1_2>
xen-passthrough=DomD1 e

NODE_1_1
reg=<REG_1_1>

irg=<IRQ_1_1> NODE_1
xen-passthrough=DomD2 reg=<VIRT_REG_1>

W2 NODE 1.0

— reg=<REG_1_2> i
3 2 reg=<VIRT_REG_1_0>
irg=<VIRT_IRQ_1_0>
xen-passthrough=DomD1

NODE_1_
reg=<REG_1
irg=<IRQ_1

_E_O:
2

0=

& i
req=<REG_1_2 0>

irg=<IRQ_1_2 0= S —
i NODE_1_2

— 3 reg=<VIRT_REG_1_2>

MODE _1_2_1
reg=<REG_1_2 1=
irg=<IRQ_1_2 1>

NODE_2 xen-passthrough=DomD1 NODE_1_2 1
rgg=<REG_2> reg=<VIRT_REG_1_2 1>
- irg=<IRQ_2> im=<VIRT_IRQ_1_2_ 1>
xen-passthrough=DomD1 NODE 2 xen-passthrough=DomD1
reg=<VIRT_REG 2>

irg=<VIRT_IRQ_2=
xen-passthrough=DomD1
NODE_3 N .

req=<REG_3>
NODE_1
reg=<VIRT_REG_1>
NODE_1_1

\pl irg=<IRQ_3=
xen-passthrough=DomD2
reg=<VIRT_REG_1_1>
irg=<VIRT_IRQ_1_1>

xen-passthrough=DomD2

NODE_3
reg=<VIRT_REG_3>
irg=<VIRT_IRQ_3>

xen-passthrough=DomD2

Passthrough: how does it work?

At GloballLogic, we leverage an automotive solution called Nautilus that is based on
dra7xx board (Tl dra7 ARM SoC) and Xen 4.5 on-board. This solution has a successfully
integrated driver domain, Linux kernel 3.12 as Dom0, and Linux kernel 3.8 as DomD.

After DomO starts, it creates DomD and grants I0-mems and IRQs to it via a domain
configuration file by means of "iomem=[]" and "irqs=[]" commands. A device tree for Dom0
is cleaned up, and only devices that are dedicated to DomO stay there. A device tree for
DombD is not constructed by Xen; instead, it is built and attached to the kernel image
during compilation. It contains only devices dedicated to DomD. In the DomD kernel, there
are requests to hardcoded I0-mems (not listed as a device in the device tree). Such
IO-mems should also be listed in a domain configuration file.

Moreover, there is one more Xen 4.5 security requirement. DomO can grant to other
domains only I0-mems and IRQs that are granted to Dom0. In other words, Xen gives
access to I0-mems and IRQs to Dom0. Then Dom0 gives access to these 10-mems and
IRQs to other domains. In Nautilus, it is implemented by adding fake nodes to the DomO
device tree for devices that should be granted to DomD, with only fields "reg" and "irg."
This way, Xen will automatically grant access to |I0-mems and IRQs while creating DomO.
Then DomO can create DomD and grant access to these resources.

Still, this method has a lot of disadvantages. First of all, we need two separate device
trees for Dom0 and DomD. Both of them significantly differ from the original device tree,
which is used for a system without Xen. This means you need to separate and modify a
device for each domain. Furthermore, after an original device tree has been updated,
changes will probably not be automatically applied to separated device trees. You will
likely need to separate the new original device tree or manually change a device tree for
each domain.

Secondly, this method contradicts the "one place source" principle. If you need to add
some 10-mems or IRQ for DomD, you should do it at several places: add a node to the
DomD device tree, add it to the DomD configuration file in "iomem" or "irgs," and create a
fake node in the DomO device tree. The same theory applies to modifying or deleting,
which makes it a potentially buggy place. Finally, DomD has one-to-one mappings for
IO-mems and IRQs, which goes against the very ideology of virtualization. Nevertheless,
the main advantage of this method is that it successfully works.

Passthrough: how is it implemented?

There are two main tasks to implement passthrough for systems with DomD: (1)
separating a common device tree into several device trees for each domain and (2)
mapping domain resources (i.e., IRQs and |O-mems).

There are two basic ways to divide a device tree. The first method is to copy a common
device tree to a target and then traverse through it, deleting the odd nodes that don't have
a “xen-passthrough” field and don't have child nodes with such options. The second

approach is to create an empty target device tree and then traverse through a common
tree, copying the necessary nodes (i.e., the ones with a “xen-passthrough” field with their
parents) to the target. For both methods, we need libfdt from xen/common. All nodes
should be copied with all their fields and child nodes. Additional investigations are needed
to understand which method has better performance metrics and is easier to implement.

Since Xen now maps resources for Dom0 automatically from a device tree, not much work
is needed to provide access for Dom0 with passthrough. An idea for IRQ and 10-mems
mapping for DomD is to do the same operations as the ones done via a domain
configuration file, but automatically and more elegantly.

While creating a domain with libxl, the library parses the configuration file and maps
resources by means of libxc (xc_physdev_map_pirq() and xc_domain_irq_permission() for
IRQs; xc_domain_iomem_permission() and xc_domain_memory_mapping() for IO-mems).
Projecting to passthrough, after (or while) creating a device tree for a domain, we have to
look through nodes for “interrupts” and “reg” fields and map them. Since we have access
to a target device tree, we can use virtual IRQs and addresses of |IO-mems (they are
returned from libxc) for a domain, replacing the original values in “interrupts” and “reg”
fields with a virtual one. Ranges of virtual memory and IRQs can be taken from special
Xen nodes, or -- if they are absent in a device tree -- a predefined one can be used.

The below figure demonstrates an example of an unaligned memory region mapping. As

you can see, all pages covered by 10-mem reg should be mapped. The node's reg field is
replaced with a domain's physical address of a first page plus a reg offset inside page.

Machine address

Node 1 mfn Oxe6680 mfn Oxe6662
reg=<0xe6680800 0x1c00> I | | |

xen-passthrough="DomD" I]

mfn Oxe6681

-
Mode_1:0xeB680800 - Oxe8682400

After IO-mem mapping for DomD

Fhysical address

~ MNode 1 ofn 0x10000 pfn 0x10001 pfn 0x10002
reg=<0x10000600 0x1c00> | | | |
xen-passthrough="DomD" I]

~r
Mode_1:0x10000800 - 0x10002400

A lot of questions about mapping remain open, such as “What should we do if several
nodes use the same mfn? Should we use different mapping for each node, or should we
save domain mapping and use the same pfn for all such nodes?” Another problem is a
hidden security violation when we map unaligned regs (due to ARM architectural
restrictions). However, if we implement passthrough functionality in Xen, we will make
great progress in creating stable, successful systems with DomD based on a Xen
hypervisor.

