
Users’ Manual
Xen v3.3

DISCLAIMER: This documentation is always under active development and as
such there may be mistakes and omissions — watch out for these andplease re-
port any you find to the developers’ mailing list, xen-devel@lists.xensource.com.
The latest version is always available on-line. Contributions of material, sugges-
tions and corrections are welcome.

Xen is Copyright c©2002-2008, Citrix Systems, Inc., University of Cambridge, UK,

XenSource Inc., IBM Corp., Hewlett-Packard Co., Intel Corp., AMD Inc., and others.

All rights reserved.

Xen is an open-source project. Most portions of Xen are licensed for copying under

the terms of the GNU General Public License, version 2. Other portions arelicensed

under the terms of the GNU Lesser General Public License, the Zope PublicLicense

2.0, or under “BSD-style” licenses. Please refer to the COPYING file fordetails.

Xen includes software by Christopher Clark. This software is covered by the following

licence:

Copyright (c) 2002, Christopher Clark. All rights reserved.

Redistribution and use in source and binary forms, with or without modi-

fication, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright no-

tice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the doc-

umentation and/or other materials provided with the distribution.

• Neither the name of the original author; nor the names of any con-

tributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-

TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-

SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-

EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-

LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-

ITY OF SUCH DAMAGE.

Contents

1 Introduction 1
1.1 Usage Scenarios . 1

1.2 Operating System Support . 2

1.3 Hardware Support . 2

1.4 Structure of a Xen-Based System . 3

1.5 History . 3

1.6 What’s New . 4

I Installation 5

2 Basic Installation 7
2.1 Prerequisites . 7

2.2 Installing from Binary Tarball . 8

2.3 Installing from RPMs . 8

2.4 Installing from Source . 8

2.4.1 Obtaining the Source . 8

2.4.2 Building from Source . 9

2.4.3 Custom Kernels . 9

2.4.4 Installing Generated Binaries 10

2.5 Configuration . 10

2.5.1 GRUB Configuration . 10

2.5.2 Serial Console (optional) . 11

2.5.3 TLS Libraries . 14

2.6 Booting Xen . 14

3 Booting a Xen System 15
3.1 Booting Domain0 . 15

3.2 Booting Guest Domains . 16

3.2.1 Creating a Domain Configuration File 16

3.2.2 Booting the Guest Domain 16

3.3 Starting / Stopping Domains Automatically 17

i

II Configuration and Management 19

4 Domain Management Tools 21
4.1 Xend . 21

4.1.1 Logging . 22

4.1.2 Configuring Xend . 22

4.2 Xm . 23

4.2.1 Basic Management Commands 23

4.2.2 Domain Scheduling Management Commands 24

5 Domain Configuration 25
5.1 Configuration Files . 25

5.2 Network Configuration . 26

5.2.1 Xen virtual network topology 26

5.2.2 Xen networking scripts . 27

5.3 Driver Domain Configuration . 27

5.3.1 PCI . 27

5.4 Support for virtual Trusted Platform Module (vTPM) 30

6 Storage and File System Management 33
6.1 Exporting Physical Devices as VBDs 33

6.2 Using File-backed VBDs . 34

6.2.1 Loopback-mounted file-backed VBDs (deprecated) 35

6.3 Using LVM-backed VBDs . 36

6.4 Using NFS Root . 37

7 CPU Management 39

8 Migrating Domains 41
8.1 Domain Save and Restore . 41

8.2 Migration and Live Migration . 41

9 Securing Xen 43
9.1 Xen Security Considerations . 43

9.2 Driver Domain Security Considerations 43

9.3 Security Scenarios . 45

9.3.1 The Isolated Management Network 45

9.3.2 A Subnet Behind a Firewall 45

9.3.3 Nodes on an Untrusted Subnet 45

10 sHype/Xen Access Control 47
10.1 Overview . 48

10.2 Xen Workload Protection Step-by-Step 49

ii

10.2.1 Configuring/Building sHype Support into Xen 49

10.2.2 Creating A WLP Policy in 3 Simple Steps with ezPolicy . . . 50

10.2.3 Deploying a WLP Policy . 52

10.2.4 Labeling Unmanaged User Domains 53

10.2.5 Labeling Resources . 55

10.2.6 Testing The Xen Workload Protection 55

10.2.7 Labeling Domain-0 –or– Restricting System Authorization . . 57

10.2.8 Labeling Managed User Domains 59

10.3 Xen Access Control Policy . 60

10.3.1 Policy Header and Policy Name 61

10.3.2 Simple Type Enforcement Policy Component 62

10.3.3 Chinese Wall Policy Component 63

10.3.4 Security Labels . 64

10.3.5 Managing sHype/Xen Security Policies at Run-time 67

10.3.6 Tools For Creating sHype/Xen Security Policies 74

10.4 Current Limitations . 74

10.4.1 Network Traffic . 74

10.4.2 Resource Access and Usage Control 74

10.4.3 Domain Migration . 75

10.4.4 Covert Channels . 75

III Reference 77

11 Build and Boot Options 79
11.1 Top-level Configuration Options . 79

11.2 Xen Build Options . 79

11.3 Xen Boot Options . 80

11.4 XenLinux Boot Options . 83

12 Further Support 85
12.1 Other Documentation . 85

12.2 Online References . 85

12.3 Mailing Lists . 86

A Unmodified (HVM) guest domains in Xen with Hardware support for Vir-
tualization 87
A.1 Building Xen with HVM support . 87

A.2 Configuration file for unmodified HVM guests 88

A.3 Creating virtual disks from scratch 90

A.3.1 Using physical disks . 90

A.3.2 Using disk image files . 90

iii

A.4 HVM Guests . 93

A.4.1 Editing the Xen HVM config file 93

A.4.2 Creating HVM guests . 93

A.4.3 Mouse issues, especially under VNC 93

A.4.4 USB Support . 96

A.4.5 Destroy HVM guests . 98

A.4.6 HVM window (X or VNC) Hot Key 98

B Vnets - Domain Virtual Networking 99
B.1 Example . 100

B.2 Installing vnet support . 101

C Glossary of Terms 103

iv

Chapter 1

Introduction

Xen is an open-sourcepara-virtualizingvirtual machine monitor (VMM), or “hypervi-
sor”, for a variety of processor architectures including x86. Xen cansecurely execute
multiple virtual machines on a single physical system with near native performance.
Xen facilitates enterprise-grade functionality, including:

• Virtual machines with performance close to native hardware.

• Live migration of running virtual machines between physical hosts.

• Up to 321 virtual CPUs per guest virtual machine, with VCPU hotplug.

• x86/32 with PAE, x86/64, and IA64 platform support.

• Intel and AMD Virtualization Technology for unmodified guest operating sys-
tems (including Microsoft Windows).

• Excellent hardware support (supports almost all Linux device drivers).

1.1 Usage Scenarios

Usage scenarios for Xen include:

Server Consolidation. Move multiple servers onto a single physical host with perfor-
mance and fault isolation provided at the virtual machine boundaries.

Hardware Independence.Allow legacy applications and operating systems to ex-
ploit new hardware.

Multiple OS configurations. Run multiple operating systems simultaneously, for de-
velopment or testing purposes.

Kernel Development. Test and debug kernel modifications in a sand-boxed virtual
machine — no need for a separate test machine.

1IA64 supports up to 64 virtual CPUs per guest virtual machine

1

Cluster Computing. Management at VM granularity provides more flexibility than
separately managing each physical host, but better control and isolation than
single-system image solutions, particularly by using live migration for load bal-
ancing.

Hardware support for custom OSes.Allow development of new OSes while bene-
fiting from the wide-ranging hardware support of existing OSes such asLinux.

1.2 Operating System Support

Para-virtualization permits very high performance virtualization, even on architectures
like x86 that are traditionally very hard to virtualize.

This approach requires operating systems to beported to run on Xen. Porting an OS
to run on Xen is similar to supporting a new hardware platform, however the process
is simplified because the para-virtual machine architecture is very similar to the under-
lying native hardware. Even though operating system kernels must explicitly support
Xen, a key feature is that user space applications and librariesdo notrequire modifi-
cation.

With hardware CPU virtualization as provided by Intel VT and AMD SVM technol-
ogy, the ability to run an unmodified guest OS kernel is available. No porting of the OS
is required, although some additional driver support is necessary withinXen itself. Un-
like traditional full virtualization hypervisors, which suffer a tremendous performance
overhead, the combination of Xen and VT or Xen and Pacifica technology complement
one another to offer superb performance for para-virtualized guestoperating systems
and full support for unmodified guests running natively on the processor.

Paravirtualized Xen support is available for increasingly many operating systems: cur-
rently, mature Linux support is available and included in the standard distribution.
Other OS ports, including NetBSD, FreeBSD and Solaris are also complete.

1.3 Hardware Support

Xen currently runs on the IA64 and x86 architectures. Multiprocessor machines are
supported, and there is support for HyperThreading (SMT).

The default 32-bit Xen requires processor support for Physical Addressing Extensions
(PAE), which enables the hypervisor to address up to 16GB of physicalmemory. Xen
also supports x86/64 platforms such as Intel EM64T and AMD Opteron which can
currently address up to 1TB of physical memory.

Xen offloads most of the hardware support issues to the guest OS running in theDo-
main 0management virtual machine. Xen itself contains only the code required to
detect and start secondary processors, set up interrupt routing, and perform PCI bus

2

enumeration. Device drivers run within a privileged guest OS rather thanwithin Xen
itself. This approach provides compatibility with the majority of device hardwaresup-
ported by Linux. The default XenLinux build contains support for most server-class
network and disk hardware, but you can add support for other hardware by configuring
your XenLinux kernel in the normal way.

1.4 Structure of a Xen-Based System

A Xen system has multiple layers, the lowest and most privileged of which is Xen
itself.

Xen may host multipleguestoperating systems, each of which is executed within a
secure virtual machine. In Xen terminology, adomain. Domains are scheduled by
Xen to make effective use of the available physical CPUs. Each guest OSmanages
its own applications. This management includes the responsibility of schedulingeach
application within the time allotted to the VM by Xen.

The first domain,domain 0, is created automatically when the system boots and has
special management privileges. Domain 0 builds other domains and manages their
virtual devices. It also performs administrative tasks such as suspending, resuming
and migrating other virtual machines.

Within domain 0, a process calledxendruns to manage the system. Xend is responsible
for managing virtual machines and providing access to their consoles. Commands are
issued to xend over an HTTP interface, via a command-line tool.

1.5 History

Xen was originally developed by the Systems Research Group at the University of
Cambridge Computer Laboratory as part of the XenoServers project, funded by the
UK-EPSRC.

XenoServers aim to provide a “public infrastructure for global distributed computing”.
Xen plays a key part in that, allowing one to efficiently partition a single machine to
enable multiple independent clients to run their operating systems and applications
in an environment. This environment provides protection, resource isolation and ac-
counting. The project web page contains further information along with pointers to
papers and technical reports:http://www.cl.cam.ac.uk/xeno

Xen has grown into a fully-fledged project in its own right, enabling us to investigate
interesting research issues regarding the best techniques for virtualizing resources such
as the CPU, memory, disk and network. Project contributors now include Citrix, Intel,
IBM, HP, AMD, Novell, RedHat, Sun, Fujitsu, and Samsung.

3

Xen was first described in a paper presented at SOSP in 20032, and the first public
release (1.0) was made that October. Since then, Xen has significantly matured and is
now used in production scenarios on many sites.

1.6 What’s New

Xen 3.3.0 offers:

• IO Emulation (stub domains) for HVM IO performance and scailability

• Replacement of Intel VT vmxassist by new 16b emulation code

• Improved VT-d device pass-through e.g. for graphics devices

• Enhanced C and P state power management

• Exploitation of multi-queue support on modern NICs

• Removal of domain lock for improved PV guest scalability

• 2MB page support for HVM and PV guests

• CPU Portability

Xen 3.3 delivers the capabilities needed by enterprise customers and gives computing
industry leaders a solid, secure platform to build upon for their virtualizationsolutions.
This latest release establishes Xen as the definitive open source solution for virtualiza-
tion.

2http://www.cl.cam.ac.uk/netos/papers/2003-xensosp.p df

4

Part I

Installation

5

Chapter 2

Basic Installation

The Xen distribution includes three main components: Xen itself, ports of Linuxand
NetBSD to run on Xen, and the userspace tools required to manage a Xen-based sys-
tem. This chapter describes how to install the Xen 3.3 distribution from source. Al-
ternatively, there may be pre-built packages available as part of your operating system
distribution.

2.1 Prerequisites

The following is a full list of prerequisites. Items marked ‘†’ are required by the xend
control tools, and hence required if you want to run more than one virtualmachine;
items marked ‘∗’ are only required if you wish to build from source.

• A working Linux distribution using the GRUB bootloader and running on a P6-
class or newer CPU.

† The iproute2 package.

† The Linux bridge-utils1 (e.g.,/sbin/brctl)

† The Linux hotplug system2 (e.g., /sbin/hotplug and related scripts). On
newer distributions, this is included alongside the Linux udev system3.

∗ Build tools (gcc v3.2.x or v3.3.x, binutils, GNU make).

∗ Development installation of zlib (e.g., zlib-dev).

∗ Development installation of Python v2.2 or later (e.g., python-dev).

∗ LATEX and transfig are required to build the documentation.

1Available fromhttp://bridge.sourceforge.net
2Available fromhttp://linux-hotplug.sourceforge.net/
3Seehttp://www.kernel.org/pub/linux/utils/kernel/hotplu g/udev.html/

7

Once you have satisfied these prerequisites, you can now install either a binary or
source distribution of Xen.

2.2 Installing from Binary Tarball

Pre-built tarballs are available for download from the XenSource downloads page:

http://www.xensource.com/downloads/

Once you’ve downloaded the tarball, simply unpack and install:

tar zxvf xen-3.0-install.tgz

cd xen-3.0-install

sh ./install.sh

Once you’ve installed the binaries you need to configure your system as described in
Section 2.5.

2.3 Installing from RPMs

Pre-built RPMs are available for download from the XenSource downloads page:

http://www.xensource.com/downloads/

Once you’ve downloaded the RPMs, you typically install them via the RPM com-
mands:

rpm -iv rpmname

See the instructions and the Release Notes for each RPM set referencedat:

http://www.xensource.com/downloads/ .

2.4 Installing from Source

This section describes how to obtain, build and install Xen from source.

2.4.1 Obtaining the Source

The Xen source tree is available as either a compressed source tarball oras a clone of
our master Mercurial repository.

Obtaining the Source Tarball
Stable versions and daily snapshots of the Xen source tree are available from the
Xen download page:

http://www.xensource.com/downloads/

8

Obtaining the source via Mercurial
The source tree may also be obtained via the public Mercurial repository at:

http://xenbits.xensource.com

See the instructions and the Getting Started Guide referenced at:

http://www.xensource.com/downloads/

2.4.2 Building from Source

The top-level Xen Makefile includes a target “world” that will do the following:

• Build Xen.

• Build the control tools, including xend.

• Download (if necessary) and unpack the Linux 2.6 source code, and patch it for
use with Xen.

• Build a Linux kernel to use in domain 0 and a smaller unprivileged kernel, which
can be used for unprivileged virtual machines.

After the build has completed you should have a top-level directory calleddist/ in
which all resulting targets will be placed. Of particular interest are the two XenLinux
kernel images, one with a “-xen0” extension which contains hardware device drivers
and drivers for Xen’s virtual devices, and one with a “-xenU” extension that just con-
tains the virtual ones. These are found indist/install/boot/ along with the
image for Xen itself and the configuration files used during the build.

To customize the set of kernels built you need to edit the top-level Makefile.Look for
the line:

KERNELS ?= linux-2.6-xen0 linux-2.6-xenU

You can edit this line to include any set of operating system kernels which have con-
figurations in the top-levelbuildconfigs/ directory.

2.4.3 Custom Kernels

If you wish to build a customized XenLinux kernel (e.g. to support additional devices
or enable distribution-required features), you can use the standard Linux configuration
mechanisms, specifying that the architecture being built for isxen , e.g:

cd linux-2.6.12-xen0

make ARCH=xen xconfig

cd ..

make

You can also copy an existing Linux configuration (.config) into e.g.linux-2.6.12-xen0

and execute:

9

make ARCH=xen oldconfig

You may be prompted with some Xen-specific options. We advise accepting the de-
faults for these options.

Note that the only difference between the two types of Linux kernels that are built is
the configuration file used for each. The “U” suffixed (unprivileged)versions don’t
contain any of the physical hardware device drivers, leading to a 30% reduction in
size; hence you may prefer these for your non-privileged domains. The “0” suffixed
privileged versions can be used to boot the system, as well as in driver domains and
unprivileged domains.

2.4.4 Installing Generated Binaries

The files produced by the build process are stored under thedist/install/ direc-
tory. To install them in their default locations, do:

make install

Alternatively, users with special installation requirements may wish to install them
manually by copying the files to their appropriate destinations.

Thedist/install/boot directory will also contain the config files used for build-
ing the XenLinux kernels, and also versions of Xen and XenLinux kernels that contain
debug symbols such as (xen-syms-3.0.0 andvmlinux-syms-2.6.12.6-xen0)
which are essential for interpreting crash dumps. Retain these files as the developers
may wish to see them if you post on the mailing list.

2.5 Configuration

Once you have built and installed the Xen distribution, it is simple to prepare the
machine for booting and running Xen.

2.5.1 GRUB Configuration

An entry should be added togrub.conf (often found under/boot/ or /boot/grub/)
to allow Xen / XenLinux to boot. This file is sometimes calledmenu.lst , depending
on your distribution. The entry should look something like the following:

title Xen 3.0 / XenLinux 2.6

kernel /boot/xen-3.0.gz dom0_mem=262144

module /boot/vmlinuz-2.6-xen0 root=/dev/sda4 ro console =tty0

The kernel line tells GRUB where to find Xen itself and what boot parametersshould
be passed to it (in this case, setting the domain 0 memory allocation in kilobytes and

10

the settings for the serial port). For more details on the various Xen boot parameters
see Section 11.3.

The module line of the configuration describes the location of the XenLinux kernel that
Xen should start and the parameters that should be passed to it. These arestandard
Linux parameters, identifying the root device and specifying it be initially mounted
read only and instructing that console output be sent to the screen. Some distributions
such as SuSE do not require thero parameter.

To use an initrd, add anothermodule line to the configuration, like:

module /boot/my_initrd.gz

When installing a new kernel, it is recommended that you do not delete existing menu
options frommenu.lst , as you may wish to boot your old Linux kernel in future,
particularly if you have problems.

2.5.2 Serial Console (optional)

Serial console access allows you to manage, monitor, and interact with yoursystem
over a serial console. This can allow access from another nearby system via a null-
modem (“LapLink”) cable or remotely via a serial concentrator.

You system’s BIOS, bootloader (GRUB), Xen, Linux, and login access must each be
individually configured for serial console access. It isnot strictly necessary to have
each component fully functional, but it can be quite useful.

For general information on serial console configuration under Linux, refer to the “Re-
mote Serial Console HOWTO” at The Linux Documentation Project:http://www.

tldp.org

Serial Console BIOS configuration

Enabling system serial console output neither enables nor disables serial capabilities
in GRUB, Xen, or Linux, but may make remote management of your system more
convenient by displaying POST and other boot messages over serial port and allowing
remote BIOS configuration.

Refer to your hardware vendor’s documentation for capabilities and procedures to en-
able BIOS serial redirection.

Serial Console GRUB configuration

Enabling GRUB serial console output neither enables nor disables Xen orLinux serial
capabilities, but may made remote management of your system more convenientby
displaying GRUB prompts, menus, and actions over serial port and allowingremote
GRUB management.

11

Adding the following two lines to your GRUB configuration file, typically either
/boot/grub/menu.lst or /boot/grub/grub.conf depending on your distro,
will enable GRUB serial output.

serial --unit=0 --speed=115200 --word=8 --parity=no --st op=1

terminal --timeout=10 serial console

Note that when both the serial port and the local monitor and keyboard areenabled,
the text “Press any key to continue” will appear at both. Pressing a key on one device
will cause GRUB to display to that device. The other device will see no output.If no
key is pressed before the timeout period expires, the system will boot to thedefault
GRUB boot entry.

Please refer to the GRUB documentation for further information.

Serial Console Xen configuration

Enabling Xen serial console output neither enables nor disables Linux kernel output
or logging in to Linux over serial port. It does however allow you to monitor and log
the Xen boot process via serial console and can be very useful in debugging.

In order to configure Xen serial console output, it is necessary to add aboot option to
your GRUB config; e.g. replace the previous example kernel line with:

kernel /boot/xen.gz dom0_mem=131072 com1=115200,8n1 con sole=com1,vga

This configures Xen to output on COM1 at 115,200 baud, 8 data bits, no parity and
1 stop bit. Modify these parameters for your environment. See Section 11.3 for an
explanation of all boot parameters.

One can also configure XenLinux to share the serial console; to achievethis append
“console=ttyS0 ” to your module line.

Serial Console Linux configuration

Enabling Linux serial console output at boot neither enables nor disables logging in to
Linux over serial port. It does however allow you to monitor and log the Linux boot
process via serial console and can be very useful in debugging.

To enable Linux output at boot time, add the parameterconsole=ttyS0 (or ttyS1,
ttyS2, etc.) to your kernel GRUB line. Under Xen, this might be:

module /vmlinuz-2.6-xen0 ro root=/dev/VolGroup00/LogVo l00 \

console=ttyS0, 115200

to enable output over ttyS0 at 115200 baud.

12

Serial Console Login configuration

Logging in to Linux via serial console, under Xen or otherwise, requiresspecifying a
login prompt be started on the serial port. To permit root logins over serialconsole,
the serial port must be added to/etc/securetty .

13

To automatically start a login prompt over the serial port, add the line:

c:2345:respawn:/sbin/mingetty ttyS0

to /etc/inittab . Runinit q to force a reload of your inttab and start getty.

To enable root logins, addttyS0 to /etc/securetty if not already present.

Your distribution may use an alternate getty; options include getty, mgetty and agetty.
Consult your distribution’s documentation for further information.

2.5.3 TLS Libraries

Users of the XenLinux 2.6 kernel should disable Thread Local Storage(TLS) (e.g.
by doing amv /lib/tls /lib/tls.disabled) before attempting to boot a Xen-
Linux kernel4. You can always reenable TLS by restoring the directory to its original
location (i.e.mv /lib/tls.disabled /lib/tls).

The reason for this is that the current TLS implementation uses segmentation in away
that is not permissible under Xen. If TLS is not disabled, an emulation mode is used
within Xen which reduces performance substantially. To ensure full performance you
should install a ‘Xen-friendly’ (nosegneg) version of the library.

2.6 Booting Xen

It should now be possible to restart the system and use Xen. Reboot and choose the
new Xen option when the Grub screen appears.

What follows should look much like a conventional Linux boot. The first portion of
the output comes from Xen itself, supplying low level information about itself and the
underlying hardware. The last portion of the output comes from XenLinux.

You may see some error messages during the XenLinux boot. These are not neces-
sarily anything to worry about—they may result from kernel configuration differences
between your XenLinux kernel and the one you usually use.

When the boot completes, you should be able to log into your system as usual.If you
are unable to log in, you should still be able to reboot with your normal Linux kernel
by selecting it at the GRUB prompt.

4If you boot without first disabling TLS, you will get a warning message during the boot process.
In this case, simply perform the rename after the machine is up and then run /sbin/ldconfig to
make it take effect.

14

Chapter 3

Booting a Xen System

Booting the system into Xen will bring you up into the privileged management domain,
Domain0. At that point you are ready to create guest domains and “boot” them using
thexm create command.

3.1 Booting Domain0

After installation and configuration is complete, reboot the system and and choose the
new Xen option when the Grub screen appears.

What follows should look much like a conventional Linux boot. The first portion of
the output comes from Xen itself, supplying low level information about itself and the
underlying hardware. The last portion of the output comes from XenLinux.

When the boot completes, you should be able to log into your system as usual.If you
are unable to log in, you should still be able to reboot with your normal Linux kernel
by selecting it at the GRUB prompt.

The first step in creating a new domain is to prepare a root filesystem for it toboot.
Typically, this might be stored in a normal partition, an LVM or other volume manager
partition, a disk file or on an NFS server. A simple way to do this is simply to boot
from your standard OS install CD and install the distribution into another partition on
your hard drive.

To start the xend control daemon, type

xend start

If you wish the daemon to start automatically, see the instructions in Section 4.1. Once
the daemon is running, you can use thexm tool to monitor and maintain the domains
running on your system. This chapter provides only a brief tutorial. We provide full
details of thexm tool in the next chapter.

15

3.2 Booting Guest Domains

3.2.1 Creating a Domain Configuration File

Before you can start an additional domain, you must create a configuration file. We
provide two example files which you can use as a starting point:

• /etc/xen/xmexample1 is a simple template configuration file for describing
a single VM.

• /etc/xen/xmexample2 file is a template description that is intended to be
reused for multiple virtual machines. Setting the value of thevmid variable on
thexmcommand line fills in parts of this template.

There are also a number of other examples which you may find useful. Copyone of
these files and edit it as appropriate. Typical values you may wish to edit include:

kernel Set this to the path of the kernel you compiled for use with Xen
(e.g.kernel = ‘‘/boot/vmlinuz-2.6-xenU’’)

memory Set this to the size of the domain’s memory in megabytes (e.g.
memory = 64)

disk Set the first entry in this list to calculate the offset of the domain’s
root partition, based on the domain ID. Set the second to the lo-
cation of/usr if you are sharing it between domains (e.g.disk =

[’phy:your hard drive%d,sda1,w’ % (base partition number

+ vmid), ’phy:your usr partition,sda6,r’]

dhcp Uncomment the dhcp variable, so that the domain will receive its
IP address from a DHCP server (e.g.dhcp=‘‘dhcp’’)

You may also want to edit thevif variable in order to choose the MAC address of the
virtual ethernet interface yourself. For example:

vif = [’mac=00:16:3E:F6:BB:B3’]

If you do not set this variable, xend will automatically generate a random MAC ad-
dress from the range 00:16:3E:xx:xx:xx, assigned by IEEE to XenSource as an OUI
(organizationally unique identifier). XenSource Inc. gives permission for anyone to
use addresses randomly allocated from this range for use by their Xen domains.

For a list of IEEE OUI assignments, seehttp://standards.ieee.org/regauth/

oui/oui.txt

3.2.2 Booting the Guest Domain

Thexm tool provides a variety of commands for managing domains. Use thecreate

command to start new domains. Assuming you’ve created a configuration filemyvmconf

16

based around/etc/xen/xmexample2 , to start a domain with virtual machine ID 1
you should type:

xm create -c myvmconf vmid=1

The-c switch causesxm to turn into the domain’s console after creation. Thevmid=1

sets thevmid variable used in themyvmconf file.

You should see the console boot messages from the new domain appearingin the
terminal in which you typed the command, culminating in a login prompt.

3.3 Starting / Stopping Domains Automatically

It is possible to have certain domains start automatically at boot time and to have dom0
wait for all running domains to shutdown before it shuts down the system.

To specify a domain is to start at boot-time, place its configuration file (or a link toit)
under/etc/xen/auto/ .

A Sys-V style init script for Red Hat and LSB-compliant systems is providedand will
be automatically copied to/etc/init.d/ during install. You can then enable it in
the appropriate way for your distribution.

For instance, on Red Hat:

chkconfig --add xendomains

By default, this will start the boot-time domains in runlevels 3, 4 and 5.

You can also use theservice command to run this script manually, e.g:

service xendomains start

Starts all the domains with config files under /etc/xen/auto/.

service xendomains stop

Shuts down all running Xen domains.

17

18

Part II

Configuration and Management

19

Chapter 4

Domain Management Tools

This chapter summarizes the management software and tools available.

4.1 Xend

The Xend node control daemon performs system management functions related to
virtual machines. It forms a central point of control of virtualized resources, and must
be running in order to start and manage virtual machines. Xend must be runas root
because it needs access to privileged system management functions.

An initialization script named/etc/init.d/xend is provided to start Xend at boot
time. Use the tool appropriate (i.e. chkconfig) for your Linux distribution to specify
the runlevels at which this script should be executed, or manually create symbolic links
in the correct runlevel directories.

Xend can be started on the command line as well, and supports the following setof
parameters:

xend start start xend, if not already running
xend stop stop xend if already running
xend restart restart xend if running, otherwise start it
xend status indicates xend status by its return code

A SysV init script calledxend is provided to start xend at boot time.make install

installs this script in/etc/init.d . To enable it, you have to make symbolic links
in the appropriate runlevel directories or use thechkconfig tool, where available.
Once xend is running, administration can be done using thexm tool.

21

4.1.1 Logging

As xend runs, events will be logged to/var/log/xen/xend.log and (less fre-
quently) to/var/log/xen/xend-debug.log . These, along with the standard sys-
log files, are useful when troubleshooting problems.

4.1.2 Configuring Xend

Xend is written in Python. At startup, it reads its configuration information from
the file /etc/xen/xend-config.sxp . The Xen installation places an example
xend-config.sxp file in the/etc/xen subdirectory which should work for most
installations.

See the example configuration filexend-debug.sxp and the section 5 man page
xend-config.sxp for a full list of parameters and more detailed information.
Some of the most important parameters are discussed below.

An HTTP interface and a Unix domain socket API are available to communicate with
Xend. This allows remote users to pass commands to the daemon. By default, Xend
does not start an HTTP server. It does start a Unix domain socket management server,
as the low level utilityxm requires it. For support of cross-machine migration, Xend
can start a relocation server. This support is not enabled by default for security reasons.

Note: the examplexend configuration file modifies the defaults and starts up Xend as
an HTTP server as well as a relocation server.

From the file:

#(xend-http-server no)

(xend-http-server yes)

#(xend-unix-server yes)

#(xend-relocation-server no)

(xend-relocation-server yes)

Comment or uncomment lines in that file to disable or enable features that you require.

Connections from remote hosts are disabled by default:

Address xend should listen on for HTTP connections, if xend -http-server

set.

Specifying ’localhost’ prevents remote connections.

Specifying the empty string ’’ (the default) allows all con nections.

#(xend-address ’’)

(xend-address localhost)

It is recommended that if migration support is not needed, thexend-relocation-server

parameter value be changed to “no” or commented out.

22

4.2 Xm

The xm tool is the primary tool for managing Xen from the console. The general
format of an xm command line is:

xm command [switches] [arguments] [variables]

The availableswitchesandargumentsare dependent on thecommandchosen. The
variablesmay be set using declarations of the formvariable=value and com-
mand line declarations override any of the values in the configuration file being used,
including the standard variables described above and any custom variables (for in-
stance, thexmdefconfig file uses avmid variable).

For online help for the commands available, type:

xm help

This will list the most commonly used commands. The full list can be obtained using
xm help --long . You can also typexm help <command> for more information
on a given command.

4.2.1 Basic Management Commands

One useful command is# xm list which lists all domains running in rows of the
following format:

name domid memory vcpus state cputime

The meaning of each field is as follows:

name The descriptive name of the virtual machine.

domid The number of the domain ID this virtual machine is running in.

memory Memory size in megabytes.

vcpus The number of virtual CPUs this domain has.

state Domain state consists of 5 fields:

r running

b blocked

p paused

s shutdown

c crashed

cputime How much CPU time (in seconds) the domain has used so far.

The xm list command also supports a long output format when the-l switch is
used. This outputs the full details of the running domains in xend’s SXP configuration
format.

23

If you want to know how long your domains have been running for, then you can use
the# xm uptime command.

You can get access to the console of a particular domain using the# xm console

command (e.g.# xm console myVM).

4.2.2 Domain Scheduling Management Commands

The credit CPU scheduler automatically load balances guest VCPUs across all avail-
able physical CPUs on an SMP host. The user need not manually pin VCPUsto load
balance the system. However, she can restrict which CPUs a particular VCPU may run
on using thexm vcpu-pin command.

Each guest domain is assigned aweight and acap .

A domain with a weight of 512 will get twice as much CPU as a domain with a weight
of 256 on a contended host. Legal weights range from 1 to 65535 and thedefault is
256.

The cap optionally fixes the maximum amount of CPU a guest will be able to consume,
even if the host system has idle CPU cycles. The cap is expressed in percentage of one
physical CPU: 100 is 1 physical CPU, 50 is half a CPU, 400 is 4 CPUs, etc...The
default, 0, means there is no upper cap.

When you are running with the credit scheduler, you can check and modify your do-
mains’ weights and caps using thexm sched-credit command:

xm sched-credit -d <domain> lists weight and cap
xm sched-credit -d <domain> -w <weight> sets the weight
xm sched-credit -d <domain> -c <cap> sets the cap

24

Chapter 5

Domain Configuration

The following contains the syntax of the domain configuration files and description of
how to further specify networking, driver domain and general scheduling behavior.

5.1 Configuration Files

Xen configuration files contain the following standard variables. Unless otherwise
stated, configuration items should be enclosed in quotes: see the configuration scripts
in /etc/xen/ for concrete examples.

kernel Path to the kernel image.

ramdisk Path to a ramdisk image (optional).

memory Memory size in megabytes.

vcpus The number of virtual CPUs.

console Port to export the domain console on (default 9600 + domain ID).

vif Network interface configuration. This may simply contain an empty string for
each desired interface, or may override various settings, e.g.

vif = [’mac=00:16:3E:00:00:11, bridge=xen-br0’,

’bridge=xen-br1’]

to assign a MAC address and bridge to the first interface and assign a different
bridge to the second interface, leaving xend to choose the MAC address.The
settings that may be overridden in this way are type, mac, bridge, ip, script,
backend, and vifname.

disk List of block devices to export to the domain e.g.disk = [’phy:hda1,sda1,r’]

exports physical device/dev/hda1 to the domain as/dev/sda1 with read-
only access. Exporting a disk read-write which is currently mounted is danger-
ous – if you arecertainyou wish to do this, you can specifyw! as the mode.

25

dhcp Set to‘dhcp’ if you want to use DHCP to configure networking.

netmask Manually configured IP netmask.

gateway Manually configured IP gateway.

hostname Set the hostname for the virtual machine.

root Specify the root device parameter on the kernel command line.

nfs server IP address for the NFS server (if any).

nfs root Path of the root filesystem on the NFS server (if any).

extra Extra string to append to the kernel command line (if any)

Additional fields are documented in the example configuration files (e.g. to configure
virtual TPM functionality).

For additional flexibility, it is also possible to include Python scripting commands in
configuration files. An example of this is thexmexample2 file, which uses Python
code to handle thevmid variable.

5.2 Network Configuration

For many users, the default installation should work “out of the box”. More compli-
cated network setups, for instance with multiple Ethernet interfaces and/or existing
bridging setups will require some special configuration.

The purpose of this section is to describe the mechanisms provided by xend toallow a
flexible configuration for Xen’s virtual networking.

5.2.1 Xen virtual network topology

Each domain network interface is connected to a virtual network interface indom0
by a point to point link (effectively a “virtual crossover cable”). These devices are
namedvif <domid >. <vifid > (e.g.vif1.0 for the first interface in domain 1,
vif3.1 for the second interface in domain 3).

Traffic on these virtual interfaces is handled in domain 0 using standard Linux mech-
anisms for bridging, routing, rate limiting, etc. Xend calls on two shell scripts to per-
form initial configuration of the network and configuration of new virtual interfaces.
By default, these scripts configure a single bridge for all the virtual interfaces. Arbi-
trary routing / bridging configurations can be configured by customizing the scripts, as
described in the following section.

26

5.2.2 Xen networking scripts

Xen’s virtual networking is configured by two shell scripts (by defaultnetwork-bridge

andvif-bridge). These are called automatically by xend when certain events occur,
with arguments to the scripts providing further contextual information. These scripts
are found by default in/etc/xen/scripts . The names and locations of the scripts
can be configured in/etc/xen/xend-config.sxp .

network-bridge: This script is called whenever xend is started or stopped to respec-
tively initialize or tear down the Xen virtual network. In the default configura-
tion initialization creates the bridge ‘xen-br0’ and moves eth0 onto that bridge,
modifying the routing accordingly. When xend exits, it deletes the Xen bridge
and removes eth0, restoring the normal IP and routing configuration.

vif-bridge: This script is called for every domain virtual interface and can configure
firewalling rules and add the vif to the appropriate bridge. By default, this adds
and removes VIFs on the default Xen bridge.

Other example scripts are available (network-route andvif-route , network-nat

andvif-nat). For more complex network setups (e.g. where routing is required or
integrate with existing bridges) these scripts may be replaced with customized variants
for your site’s preferred configuration.

5.3 Driver Domain Configuration

5.3.1 PCI

Individual PCI devices can be assigned to a given domain (a PCI driver domain) to
allow that domain direct access to the PCI hardware.

While PCI Driver Domains can increase the stability and security of a system by ad-
dressing a number of security concerns, there are some security issuesthat remain that
you can read about in Section 9.2.

Compile-Time Setup

To use this functionality, ensure that the PCI Backend is compiled in to a privileged
domain (e.g. domain 0) and that the domains which will be assigned PCI deviceshave
the PCI Frontend compiled in. In XenLinux, the PCI Backend is available under the
Xen configuration section while the PCI Frontend is under the architecture-specific
”Bus Options” section. You may compile both the backend and the frontend intothe
same kernel; they will not affect each other.

27

PCI Backend Configuration - Binding at Boot

The PCI devices you wish to assign to unprivileged domains must be ”hidden” from
your backend domain (usually domain 0) so that it does not load a driver for them. Use
thepciback.hide kernel parameter which is specified on the kernel command-line
and is configurable through GRUB (see Section 2.5). Note that devices are not really
hidden from the backend domain. The PCI Backend appears to the Linux kernel as a
regular PCI device driver. The PCI Backend ensures that no other device driver loads
for the devices by binding itself as the device driver for those devices. PCI devices are
identified by hexadecimal slot/function numbers (on Linux, uselspci to determine
slot/function numbers of your devices) and can be specified with or withoutthe PCI
domain:

(bus: slot. func) example(02:1d.3)

(domain: bus: slot. func) example(0000:02:1d.3)

An example kernel command-line which hides two PCI devices might be:
root=/dev/sda4 ro console=tty0 pciback.hide=(02:01.f)(0000:04:1d.0)

PCI Backend Configuration - Late Binding

PCI devices can also be bound to the PCI Backend after boot through themanual
binding/unbinding facilities provided by the Linux kernel in sysfs (allowing for a
Xen user to give PCI devices to driver domains that were not specified on the kernel
command-line). There are several attributes with the PCI Backend’s sysfs directory
(/sys/bus/pci/drivers/pciback) that can be used to bind/unbind devices:

slots lists all of the PCI slots that the PCI Backend will try to seize (or ”hide” from
Domain 0). A PCI slot must appear in this list before it can be bound to the PCI
Backend through thebind attribute.

new slot write the name of a slot here (in 0000:00:00.0 format) to have the PCI Back-
end seize the device in this slot.

remove slot write the name of a slot here (same format asnew slot) to have the PCI
Backend no longer try to seize devices in this slot. Note that this does not unbind
the driver from a device it has already seized.

bind write the name of a slot here (in 0000:00:00.0 format) to have the Linux kernel
attempt to bind the device in that slot to the PCI Backend driver.

unbind write the name of a skit here (same format asbind) to have the Linux kernel
unbind the device from the PCI Backend. DO NOT unbind a device while it is
currently given to a PCI driver domain!

Some examples:

28

Bind a device to the PCI Backend which is not bound to any other driver.

Add a new slot to the PCI Backend’s list

echo -n 0000:01:04.d > /sys/bus/pci/drivers/pciback/ne w_slot

Now that the backend is watching for the slot, bind to it

echo -n 0000:01:04.d > /sys/bus/pci/drivers/pciback/bi nd

Unbind a device from its driver and bind to the PCI Backend.

Unbind a PCI network card from its network driver

echo -n 0000:05:02.0 > /sys/bus/pci/drivers/3c905/unbi nd

And now bind it to the PCI Backend

echo -n 0000:05:02.0 > /sys/bus/pci/drivers/pciback/ne w_slot

echo -n 0000:05:02.0 > /sys/bus/pci/drivers/pciback/bi nd

Note that the ”-n” option in the example is important as it causes echo to not output a
new-line.

PCI Backend Configuration - User-space Quirks

Quirky devices (such as the Broadcom Tigon 3) may need write access to their con-
figuration space registers. Xen can be instructed to allow specified PCI devices write
access to specific configuration space registers. The policy may be found in:

/etc/xen/xend-pci-quirks.sxp

The policy file is heavily commented and is intended to provide enough documentation
for developers to extend it.

PCI Backend Configuration - Permissive Flag

If the user-space quirks approach doesn’t meet your needs you maywant to enable
the permissive flag for that device. To do so, first get the PCI domain, bus, slot, and
function information from dom0 vialspci . Then augment the user-space policy for
permissive devices. The permissive policy can be found in:

/etc/xen/xend-pci-permissive.sxp

Currently, the only way to reset the permissive flag is to unbind the device from the
PCI Backend driver.

PCI Backend - Checking Status

There two important sysfs nodes that provide a mechanism to view specificson quirks
and permissive devices:

/sys/bus/drivers/pciback/permissive

Usecat on this file to view a list of permissive slots.

29

/sys/bus/drivers/pciback/quirks

Usecat on this file view a hierarchical view of devices bound to the PCI back-
end, their PCI vendor/device ID, and any quirks that are associated withthat
particular slot.

You may notice that every device bound to the PCI backend has 17 quirks standard
”quirks” regardless ofxend-pci-quirks.sxp . These default entries are necessary
to support interactions between the PCI bus manager and the device boundto it. Even
non-quirky devices should have these standard entries.

In this case, preference was given to accuracy over aesthetics by choosing to show the
standard quirks in the quirks list rather than hide them from the inquiring user

PCI Frontend Configuration

To configure a domU to receive a PCI device:

Command-line: Use thepci command-line flag. For multiple devices, use the option
multiple times.

xm create netcard-dd pci=01:00.0 pci=02:03.0

Flat Format configuration file: Specify all of your PCI devices in a python list named
pci.

pci=[’01:00.0’,’02:03.0’]

SXP Format configuration file: Use a single PCI device section for all of your de-
vices (specify the numbers in hexadecimal with the preceding ’0x’). Note that
domainhere refers to the PCI domain, not a virtual machine within Xen.

(device (pci

(dev (domain 0x0)(bus 0x3)(slot 0x1a)(func 0x1)

(dev (domain 0x0)(bus 0x1)(slot 0x5)(func 0x0)

)

5.4 Support for virtual Trusted Platform Module (vTPM)

Paravirtualized domains can be given access to a virtualized version of a TPM. This
enables applications in these domains to use the services of the TPM device for exam-
ple through a TSS stack1. The Xen source repository provides the necessary software
components to enable virtual TPM access. Support is provided through several differ-
ent pieces. First, a TPM emulator has been modified to provide TPM’s functionality
for the virtual TPM subsystem. Second, a virtual TPM Manager coordinates the vir-
tual TPMs efforts, manages their creation, and provides protected key storage using

1Trousers TSS stack: http://sourceforge.net/projects/trousers

30

the TPM. Third, a device driver pair providing a TPM front- and backend is available
for XenLinux to deliver TPM commands from the domain to the virtual TPM man-
ager, which dispatches it to a software TPM. Since the TPM Manager relieson a HW
TPM for protected key storage, therefore this subsystem requires a Linux-supported
hardware TPM. For development purposes, a TPM emulator is available for use on
non-TPM enabled platforms.

Compile-Time Setup

To enable access to the virtual TPM, the virtual TPM backend driver mustbe compiled
for a privileged domain (e.g. domain 0). Using the XenLinux configuration,the neces-
sary driver can be selected in the Xen configuration section. Unless the driver has been
compiled into the kernel, its module must be activated using the following command:

modprobe tpmbk

Similarly, the TPM frontend driver must be compiled for the kernel trying to use TPM
functionality. Its driver can be selected in the kernel configuration section Device
Driver / Character Devices / TPM Devices. Along with that the TPM driver for the
built-in TPM must be selected. If the virtual TPM driver has been compiled asmodule,
it must be activated using the following command:

modprobe tpm_xenu

Furthermore, it is necessary to build the virtual TPM manager and softwareTPM by
making changes to entries in Xen build configuration files. The following entryin the
file Config.mk in the Xen root source directory must be made:

VTPM_TOOLS ?= y

After a build of the Xen tree and a reboot of the machine, the TPM backend drive must
be loaded. Once loaded, the virtual TPM manager daemon must be started before
TPM-enabled guest domains may be launched. To enable being the destination of a
virtual TPM Migration, the virtual TPM migration daemon must also be loaded.

vtpm_managerd

vtpm_migratord

Once the VTPM manager is running, the VTPM can be accessed by loading the front
end driver in a guest domain.

Development and Testing TPM Emulator

For development and testing on non-TPM enabled platforms, a TPM emulator can be
used in replacement of a platform TPM. First, the entry in the file tools/vtpm/Rules.mk
must look as follows:

BUILD_EMULATOR = y

31

Second, the entry in the file tool/vtpmmanager/Rules.mk must be uncommented as
follows:

TCS talks to fifo’s rather than /dev/tpm. TPM Emulator assu med on fifos

CFLAGS += -DDUMMY_TPM

Before starting the virtual TPM Manager, start the emulator by executing thefollowing
in dom0:

tpm_emulator clear

vTPM Frontend Configuration

To provide TPM functionality to a user domain, a line must be added to the virtual
TPM configuration file using the following format:

vtpm = [’instance=<instance number>, backend=<domain id> ’]

The instance numberreflects the preferred virtual TPM instance to associate with the
domain. If the selected instance is already associated with another domain, thesys-
tem will automatically select the next available instance. An instance number greater
than zero must be provided. It is possible to omit the instance parameter fromthe
configuration file.

Thedomain idprovides the ID of the domain where the virtual TPM backend driver
and virtual TPM are running in. It should currently always be set to ’0’.

Examples for valid vtpm entries in the configuration file are

vtpm = [’instance=1, backend=0’]

and

vtpm = [’backend=0’].

Using the virtual TPM

Access to TPM functionality is provided by the virtual TPM frontend driver. Similar
to existing hardware TPM drivers, this driver provides basic TPM statusinformation
through thesysfsfilesystem. In a Xen user domain the sysfs entries can be found in
/sys/devices/xen/vtpm-0.

Commands can be sent to the virtual TPM instance using the character device/dev/tpm0
(major 10, minor 224).

32

Chapter 6

Storage and File System
Management

Storage can be made available to virtual machines in a number of different ways. This
chapter covers some possible configurations.

The most straightforward method is to export a physical block device (a hard drive or
partition) from dom0 directly to the guest domain as a virtual block device (VBD).

Storage may also be exported from a filesystem image or a partitioned filesystem image
as afile-backed VBD.

Finally, standard network storage protocols such as NBD, iSCSI, NFS, etc., can be
used to provide storage to virtual machines.

6.1 Exporting Physical Devices as VBDs

One of the simplest configurations is to directly export individual partitions from do-
main 0 to other domains. To achieve this use thephy: specifier in your domain
configuration file. For example a line like

disk = [’phy:hda3,sda1,w’]

specifies that the partition/dev/hda3 in domain 0 should be exported read-write to
the new domain as/dev/sda1 ; one could equally well export it as/dev/hda or
/dev/sdb5 should one wish.

In addition to local disks and partitions, it is possible to export any device that Linux
considers to be “a disk” in the same manner. For example, if you have iSCSI disks or
GNBD volumes imported into domain 0 you can export these to other domains using
thephy: disk syntax. E.g.:

disk = [’phy:vg/lvm1,sda2,w’]

33

Warning: Block device sharing

Block devices should typically only be shared between domains in a read-
only fashion otherwise the Linux kernel’s file systems will get very con-
fused as the file system structure may change underneath them (having
the same ext3 partition mountedrw twice is a sure fire way to cause ir-
reparable damage)! Xend will attempt to prevent you from doing this
by checking that the device is not mounted read-write in domain 0, and
hasn’t already been exported read-write to another domain. If you want
read-write sharing, export the directory to other domains via NFS from
domain 0 (or use a cluster file system such as GFS or ocfs2).

6.2 Using File-backed VBDs

It is also possible to use a file in Domain 0 as the primary storage for a virtual machine.
As well as being convenient, this also has the advantage that the virtual block device
will be sparse— space will only really be allocated as parts of the file are used. So
if a virtual machine uses only half of its disk space then the file really takes up half of
the size allocated.

For example, to create a 2GB sparse file-backed virtual block device (actually only
consumes no disk space at all):

dd if=/dev/zero of=vm1disk bs=1k seek=2048k count=0

Make a file system in the disk file:

mkfs -t ext3 vm1disk

(when the tool asks for confirmation, answer ‘y’)

Populate the file system e.g. by copying from the current root:

mount -o loop vm1disk /mnt

cp -ax /{root,dev,var,etc,usr,bin,sbin,lib} /mnt

mkdir /mnt/{proc,sys,home,tmp}

Tailor the file system by editing/etc/fstab , /etc/hostname , etc. Don’t forget
to edit the files in the mounted file system, instead of your domain 0 filesystem, e.g.
you would edit/mnt/etc/fstab instead of/etc/fstab . For this example put
/dev/sda1 to root in fstab.

Now unmount (this is important!):

umount /mnt

In the configuration file set:

disk = [’tap:aio:/full/path/to/vm1disk,sda1,w’]

34

As the virtual machine writes to its ‘disk’, the sparse file will be filled in and consume
more space up to the original 2GB.

Note: Users that have worked with file-backed VBDs on Xen in previous versions
will be interested to know that this support is now provided through the blktapdriver
instead of the loopback driver. This change results in file-based block devices that
are higher-performance, more scalable, and which provide better safety properties for
VBD data. All that is required to update your existing file-backed VM configurations
is to change VBD configuration lines from:

disk = [’file:/full/path/to/vm1disk,sda1,w’]

to:

disk = [’tap:aio:/full/path/to/vm1disk,sda1,w’]

6.2.1 Loopback-mounted file-backed VBDs (deprecated)

Note: Loopback mounted VBDs have now been replaced with blktap-based support
for raw image files, as described above. This section remains to detail a configuration
that was used by older Xen versions.

Raw image file-backed VBDs may also be attached to VMs using the Linux loopback
driver. The only required change to the raw file instructions above are tospecify the
configuration entry as:

disk = [’file:/full/path/to/vm1disk,sda1,w’]

Note that loopback file-backed VBDs may not be appropriate for backing I/O-
intensive domains.This approach is known to experience substantial slowdowns un-
der heavy I/O workloads, due to the I/O handling by the loopback block device used
to support file-backed VBDs in dom0. Loopback support remains for oldXen instal-
lations, and users are strongly encouraged to use the blktap-based file support (using
“ tap:aio ” as described above).

Additionally, Linux supports a maximum of eight loopback file-backed VBDs across
all domains by default. This limit can be statically increased by using themax loop
module parameter if CONFIGBLK DEV LOOP is compiled as a module in the dom0
kernel, or by using themax loop=nboot option if CONFIGBLK DEV LOOP is com-
piled directly into the dom0 kernel. Again, users are encouraged to use the blktap-
based file support described above which scales to much larger number of active
VBDs.

35

6.3 Using LVM-backed VBDs

A particularly appealing solution is to use LVM volumes as backing for domain file-
systems since this allows dynamic growing/shrinking of volumes as well as snapshot
and other features.

To initialize a partition to support LVM volumes:

pvcreate /dev/sda10

Create a volume group named ‘vg’ on the physical partition:

vgcreate vg /dev/sda10

Create a logical volume of size 4GB named ‘myvmdisk1’:

lvcreate -L4096M -n myvmdisk1 vg

You should now see that you have a/dev/vg/myvmdisk1 Make a filesystem, mount
it and populate it, e.g.:

mkfs -t ext3 /dev/vg/myvmdisk1

mount /dev/vg/myvmdisk1 /mnt

cp -ax / /mnt

umount /mnt

Now configure your VM with the following disk configuration:

disk = [’phy:vg/myvmdisk1,sda1,w’]

LVM enables you to grow the size of logical volumes, but you’ll need to resize the
corresponding file system to make use of the new space. Some file systems (e.g. ext3)
now support online resize. See the LVM manuals for more details.

You can also use LVM for creating copy-on-write (CoW) clones of LVM volumes
(known as writable persistent snapshots in LVM terminology). This facility is new in
Linux 2.6.8, so isn’t as stable as one might hope. In particular, using lots ofCoW
LVM disks consumes a lot of dom0 memory, and error conditions such as running out
of disk space are not handled well. Hopefully this will improve in future.

To create two copy-on-write clones of the above file system you would usethe follow-
ing commands:

lvcreate -s -L1024M -n myclonedisk1 /dev/vg/myvmdisk1

lvcreate -s -L1024M -n myclonedisk2 /dev/vg/myvmdisk1

Each of these can grow to have 1GB of differences from the master volume. You can
grow the amount of space for storing the differences using the lvextend command, e.g.:

lvextend +100M /dev/vg/myclonedisk1

Don’t let the ‘differences volume’ ever fill up otherwise LVM gets ratherconfused. It
may be possible to automate the growing process by usingdmsetup wait to spot the
volume getting full and then issue anlvextend .

36

In principle, it is possible to continue writing to the volume that has been cloned (the
changes will not be visible to the clones), but we wouldn’t recommend this: have the
cloned volume as a ‘pristine’ file system install that isn’t mounted directly by any of
the virtual machines.

6.4 Using NFS Root

First, populate a root filesystem in a directory on the server machine. This can be on a
distinct physical machine, or simply run within a virtual machine on the same node.

Now configure the NFS server to export this filesystem over the network by adding a
line to /etc/exports , for instance:

/export/vm1root 192.0.2.4/24 (rw,sync,no_root_squash)

Finally, configure the domain to use NFS root. In addition to the normal variables, you
should make sure to set the following values in the domain’s configuration file:

root = ’/dev/nfs’

nfs_server = ’2.3.4.5’ # substitute IP address of server

nfs_root = ’/path/to/root’ # path to root FS on the server

The domain will need network access at boot time, so either statically configure an
IP address using the config variablesip , netmask , gateway , hostname ; or enable
DHCP (dhcp=’dhcp’).

Note that the Linux NFS root implementation is known to have stability problems
under high load (this is not a Xen-specific problem), so this configuration may not be
appropriate for critical servers.

37

38

Chapter 7

CPU Management

Xen allows a domain’s virtual CPU(s) to be associated with one or more host CPUs.
This can be used to allocate real resources among one or more guests, orto make
optimal use of processor resources when utilizing dual-core, hyperthreading, or other
advanced CPU technologies.

Xen enumerates physical CPUs in a ‘depth first’ fashion. For a system withboth
hyperthreading and multiple cores, this would be all the hyperthreads on a given core,
then all the cores on a given socket, and then all sockets. I.e. if you hada two socket,
dual core, hyperthreaded Xeon the CPU order would be:

socket0 socket1

core0 core1 core0 core1

ht0 ht1 ht0 ht1 ht0 ht1 ht0 ht1
#0 #1 #2 #3 #4 #5 #6 #7

Having multiple vcpus belonging to the same domain mapped to the same physical
CPU is very likely to lead to poor performance. It’s better to use ‘vcpus-set’ to hot-
unplug one of the vcpus and ensure the others are pinned on differentCPUs.

If you are running IO intensive tasks, its typically better to dedicate either a hyper-
thread or whole core to running domain 0, and hence pin other domains so that they
can’t use CPU 0. If your workload is mostly compute intensive, you may want to pin
vcpus such that all physical CPU threads are available for guest domains.

39

40

Chapter 8

Migrating Domains

8.1 Domain Save and Restore

The administrator of a Xen system may suspend a virtual machine’s currentstate into
a disk file in domain 0, allowing it to be resumed at a later time.

For example you can suspend a domain called “VM1” to disk using the command:

xm save VM1 VM1.chk

This will stop the domain named “VM1” and save its current state into a file called
VM1.chk .

To resume execution of this domain, use thexm restore command:

xm restore VM1.chk

This will restore the state of the domain and resume its execution. The domain will
carry on as before and the console may be reconnected using thexm console com-
mand, as described earlier.

8.2 Migration and Live Migration

Migration is used to transfer a domain between physical hosts. There are two vari-
eties: regular and live migration. The former moves a virtual machine from one host
to another by pausing it, copying its memory contents, and then resuming it on the
destination. The latter performs the same logical functionality but without needing
to pause the domain for the duration. In general when performing live migration the
domain continues its usual activities and—from the user’s perspective—the migration
should be imperceptible.

To perform a live migration, both hosts must be running Xen / xend and the destina-
tion host must have sufficient resources (e.g. memory capacity) to accommodate the

41

domain after the move. Furthermore we currently require both source and destination
machines to be on the same L2 subnet.

Currently, there is no support for providing automatic remote access to filesystems
stored on local disk when a domain is migrated. Administrators should choose an
appropriate storage solution (i.e. SAN, NAS, etc.) to ensure that domain filesystems
are also available on their destination node. GNBD is a good method for exporting a
volume from one machine to another. iSCSI can do a similar job, but is more complex
to set up.

When a domain migrates, it’s MAC and IP address move with it, thus it is only possible
to migrate VMs within the same layer-2 network and IP subnet. If the destination node
is on a different subnet, the administrator would need to manually configure asuitable
etherip or IP tunnel in the domain 0 of the remote node.

A domain may be migrated using thexm migrate command. To live migrate a do-
main to another machine, we would use the command:

xm migrate --live mydomain destination.ournetwork.com

Without the--live flag, xend simply stops the domain and copies the memory image
over to the new node and restarts it. Since domains can have large allocationsthis
can be quite time consuming, even on a Gigabit network. With the--live flag xend
attempts to keep the domain running while the migration is in progress, resulting in
typical down times of just 60–300ms.

For now it will be necessary to reconnect to the domain’s console on the new machine
using thexm console command. If a migrated domain has any open network con-
nections then they will be preserved, so SSH connections do not have thislimitation.

42

Chapter 9

Securing Xen

This chapter describes how to secure a Xen system. It describes a number of scenarios
and provides a corresponding set of best practices. It begins with a section devoted to
understanding the security implications of a Xen system.

9.1 Xen Security Considerations

When deploying a Xen system, one must be sure to secure the management domain
(Domain-0) as much as possible. If the management domain is compromised, all other
domains are also vulnerable. The following are a set of best practices for Domain-0:

1. Run the smallest number of necessary services.The less things that are
present in a management partition, the better. Remember, a service running
as root in the management domain has full access to all other domains on the
system.

2. Use a firewall to restrict the traffic to the management domain.A firewall
with default-reject rules will help prevent attacks on the management domain.

3. Do not allow users to access Domain-0.The Linux kernel has been known
to have local-user root exploits. If you allow normal users to access Domain-0
(even as unprivileged users) you run the risk of a kernel exploit making all of
your domains vulnerable.

9.2 Driver Domain Security Considerations

Driver domains address a range of security problems that exist regarding the use of de-
vice drivers and hardware. On many operating systems in common use today, device
drivers run within the kernel with the same privileges as the kernel. Few orno mecha-
nisms exist to protect the integrity of the kernel from a misbehaving (read ”buggy”) or

43

malicious device driver. Driver domains exist to aid in isolating a device driver within
its own virtual machine where it cannot affect the stability and integrity of other do-
mains. If a driver crashes, the driver domain can be restarted rather than have the
entire machine crash (and restart) with it. Drivers written by unknown or untrusted
third-parties can be confined to an isolated space. Driver domains thus address a num-
ber of security and stability issues with device drivers.

However, due to limitations in current hardware, a number of security concerns remain
that need to be considered when setting up driver domains (it should be noted that the
following list is not intended to be exhaustive).

1. Without an IOMMU, a hardware device can DMA to memory regions out-
side of its controlling domain. Architectures which do not have an IOMMU
(e.g. most x86-based platforms) to restrict DMA usage by hardware arevulner-
able. A hardware device which can perform arbitrary memory reads and writes
can read/write outside of the memory of its controlling domain. A malicious or
misbehaving domain could use a hardware device it controls to send data over-
writing memory in another domain or to read arbitrary regions of memory in
another domain.

2. Shared buses are vulnerable to sniffing.Devices that share a data bus can sniff
(and possible spoof) each others’ data. Device A that is assigned to Domain A
could eavesdrop on data being transmitted by Domain B to Device B and then
relay that data back to Domain A.

3. Devices which share interrupt lines can either prevent the reception of that
interrupt by the driver domain or can trigger the interrupt servic e routine
of that guest needlessly.A devices which shares a level-triggered interrupt
(e.g. PCI devices) with another device can raise an interrupt and neverclear
it. This effectively blocks other devices which share that interrupt line from
notifying their controlling driver domains that they need to be serviced. A device
which shares an any type of interrupt line can trigger its interrupt continually
which forces execution time to be spent (in multiple guests) in the interrupt
service routine (potentially denying time to other processes within that guest).
System architectures which allow each device to have its own interrupt line (e.g.
PCI’s Message Signaled Interrupts) are less vulnerable to this denial-of-service
problem.

4. Devices may share the use of I/O memory address space.Xen can only re-
strict access to a device’s physical I/O resources at a certain granularity. For
interrupt lines and I/O port address space, that granularity is very fine(per inter-
rupt line and per I/O port). However, Xen can only restrict access to I/Omemory
address space on a page size basis. If more than one device shares use of a page
in I/O memory address space, the domains to which those devices are assigned
will be able to access the I/O memory address space of each other’s devices.

44

9.3 Security Scenarios

9.3.1 The Isolated Management Network

In this scenario, each node has two network cards in the cluster. One network card is
connected to the outside world and one network card is a physically isolated manage-
ment network specifically for Xen instances to use.

As long as all of the management partitions are trusted equally, this is the most secure
scenario. No additional configuration is needed other than forcing Xendto bind to the
management interface for relocation.

9.3.2 A Subnet Behind a Firewall

In this scenario, each node has only one network card but the entire cluster sits behind
a firewall. This firewall should do at least the following:

1. Prevent IP spoofing from outside of the subnet.

2. Prevent access to the relocation port of any of the nodes in the clusterexcept
from within the cluster.

The following iptables rules can be used on each node to prevent migrationsto that
node from outside the subnet assuming the main firewall does not do this foryou:

this command disables all access to the Xen relocation

port:

iptables -A INPUT -p tcp --destination-port 8002 -j REJECT

this command enables Xen relocations only from the specifi c

subnet:

iptables -I INPUT -p tcp -{}-source 192.0.2.0/24 \

--destination-port 8002 -j ACCEPT

9.3.3 Nodes on an Untrusted Subnet

Migration on an untrusted subnet is not safe in current versions of Xen. It may be
possible to perform migrations through a secure tunnel via an VPN or SSH.The only
safe option in the absence of a secure tunnel is to disable migration completely.The
easiest way to do this is with iptables:

this command disables all access to the Xen relocation port

iptables -A INPUT -p tcp -{}-destination-port 8002 -j REJEC T

45

46

Chapter 10

sHype/Xen Access Control

The Xen mandatory access control framework is an implementation of the sHype Hy-
pervisor Security Architecture (www.research.ibm.com/ssdshype). It permits or de-
nies communication and resource access of domains based on a security policy. The
mandatory access controls are enforced in addition to the Xen core controls, such as
memory protection. They are designed to remain transparent during normaloperation
of domains (policy-conform behavior) but to intervene when domains moveoutside
their intended sharing behavior. This chapter will describe how the sHypeaccess con-
trols in Xen can be configured to prevent viruses from spilling over fromone into
another workload type and secrets from leaking from one workload typeto another.
sHype/Xen depends on the correct behavior of Domain-0 (cf previouschapter).

Benefits of configuring sHype/ACM in Xen include:

• robust workload and resource protection effective against rogue user domains

• simple, platform- and operating system-independent security policies (idealfor
heterogeneous distributed environments)

• safety net with minimal performance overhead in case operating system security
is missing, does not scale, or fails

These benefits are very valuable because today’s operating systems become increas-
ingly complex and often have no or insufficient mandatory access controls. (Dis-
cretionary access controls, supported by most operating systems, are not effective
against viruses or misbehaving programs.) Where mandatory access control exists
(e.g., SELinux), they usually deploy platform-specific, complex, and difficult to un-
derstand security policies. Multi-tier applications in business environments typically
require different operating systems (e.g., AIX, Windows, Linux) in different tiers. Re-
lated distributed transactions and workloads cannot be easily protected onthe OS level.
The Xen access control framework steps in to offer a coarse-grainedbut very robust
and consistent security layer and safety net across different platforms and operating
systems.

47

Figure 10.1: Overview of activating sHype workload protection in Xen. Section num-
bers point to representative examples.

To control sharing between domains, Xen mediates all inter-domain communication
(shared memory, events) as well as the access of domains to resources such as storage
disks. Thus, Xen can confine distributed workloads (domain payloads) by permitting
sharing among domains running the same type of workload and denying sharing be-
tween pairs of domains that run different workload types. We assume that–from a
Xen perspective–only one workload type is running per user domain. Toenable Xen
to associate domains and resources with workload types, security labels including the
workload types are attached to domains and resources. These labels andthe hypervisor
sHype controls cannot be manipulated or bypassed by user domains and are effective
even against compromised or rogue domains.

10.1 Overview

This section gives an overview of how workloads can be protected usingthe sHype
mandatory access control framework in Xen. Figure 10.1 shows the necessary steps
in activating the Xen workload protection. These steps are described in detail in Sec-
tion 10.2.

First, the sHype/ACM access control must be enabled in the Xen distribution and the
distribution must be built and installed (cf Subsection 10.2.1). Before we canen-
force security, a Xen security policy must be created (cf Subsection 10.2.2) and de-
ployed (cf Subsection 10.2.3). This policy defines the workload types differentiated
during access control. It also defines the rules that compare workload types of do-
mains and resources to decide about access requests. Workload typesare represented

48

by security labels that can be securely associated to domains and resources (cf Subsec-
tions 10.2.4 and 10.2.5). The functioning of the active sHype/Xen workloadprotection
is demonstrated using simple resource assignment, and domain creation tests in Sub-
section 10.2.6. Section 10.3 describes the syntax and semantics of the sHype/Xen
security policy in detail and introduces briefly the tools that are available to help you
create your own sHype security policies.

The next section describes all the necessary steps to create, deploy, and test a simple
workload protection policy. It is meant to enable Xen users and developers to quickly
try out the sHype/Xen workload protection. Those readers who are interested in learn-
ing more about how the sHype access control in Xen works and how it is configured
using the XML security policy should read Section 10.3 as well. Section 10.4 con-
cludes this chapter with current limitations of the sHype implementation for Xen.

10.2 Xen Workload Protection Step-by-Step

You are about to configure and deploy the Xen sHype workload protection by follow-
ing 5 simple steps:

• configure and install sHype/Xen

• create a simple workload protection security policy

• deploy the sHype/Xen security policy

• associate domains and resources with workload labels,

• test the workload protection

The essential commands to create and deploy an sHype/Xen security policy are num-
bered throughout the following sections. If you want a quick-guide or return at a later
time to go quickly through this demonstration, simply look for the numbered com-
mands and apply them in order.

10.2.1 Configuring/Building sHype Support into Xen

First, we need to configure the access control module in Xen and install the ACM-
enabled Xen hypervisor. This step installs security tools and compiles sHype/ACM
controls into the Xen hypervisor.

To enable sHype/ACM in Xen, please edit the Config.mk file in the top Xen directory.

(1) In Config.mk

Change: XSM_ENABLE ?= n

To: XSM_ENABLE ?= y

Change: ACM_SECURITY ?= n

49

To: ACM_SECURITY ?= y

Then install the security-enabled Xen environment as follows:

(2) # make world

make install

Reboot into the security-enabled Xen hypervisor.

(3) # reboot

Xen will boot into the default security policy. After reboot, you can explore the simple
DEFAULT policy.

xm getpolicy
Supported security subsystems : ACM
Policy name : DEFAULT
Policy type : ACM
Version of XML policy : 1.0
Policy configuration : loaded

xm labels
SystemManagement

xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 941 1 r----- 38.1 ACM:DEFAULT:SystemManagement

In this state, no domains can be started. Now, a policy can be created and loaded into
the hypervisor.

10.2.2 Creating A WLP Policy in 3 Simple Steps with ezPolicy

We will use the ezPolicy tool to quickly create a policy that protects workloads. You
will need both the Python and wxPython packages to run this tool. To run the tool
in Domain-0, you can download the wxPython package from www.wxpython.org or
use the commandyum install wxPython in Redhat/Fedora. To run the tool on
MS Windows, you also need to download the Python package from www.python.org.
After these packages are installed, start the ezPolicy tool with the following command:

(4) # xensec_ezpolicy

Figure 10.2 shows a screen-shot of the tool. The following steps illustrate how you
can create the workload definition shown in Figure 10.2. You can use<CTRL>-h to
pop up a help window at any time. The indicators (a), (b), and (c) in Figure10.2 show
the buttons that are used during the 3 steps of creating a policy:

1. defining workloads

2. defining run-time conflicts

3. translating the workload definition into an sHype/Xen access control policy

50

Defining workloads. Workloads are defined for each organization and department
that you enter in the left panel.

To ease the transition from an unlabeled to a fully labeled workload-protection envi-
ronment, we have added support to sHype/Xen to run unlabeled domains accessing
unlabeled resources in addition to labeled domains accessing labeled resources.

Support for running unlabeled domains on sHype/Xen is enabled by adding the pre-
defined workload type and label__UNLABELED__to the security policy. (This is a
double underscore followed by the string ”UNLABELED” followed by a double under-
score.) The ezPolicy tool automatically adds this organization-level workload type to
a new workload definition (cf Figure 10.2). It can simply be deleted from theworkload
definition if no such support is desired. If unlabeled domains are supported in the pol-
icy, then any domain or resource that has no label will implicitly inherit this labelwhen
access control decisions are made. In effect, unlabeled domains and resources define
a new workload type__UNLABELED__, which is confined from any other labeled
workload.

Please use now the “New Org” button to add the organization workload types“A-
Bank”, “B-Bank”, and “AutoCorp”.

You can refine an organization to differentiate between multiple department workloads
by right-clicking the organization and selectingAdd Department (or selecting an
organization and pressing<CRTL>-a). Create department workloads “SecurityUn-
derwriting”, and “MarketAnalysis” for the “A-Bank”. The resulting layout of the tool
should be similar to the left panel shown in Figure 10.2.

Figure 10.2: Final layout including workload definition and Run-time Exclusion rules.

Defining run-time conflicts. Workloads that shall be prohibited from running con-
currently on the same hypervisor platform are grouped into “Run-time Exclusion rules”

51

on the right panel of the window. Cautious users should include the__UNLABELED__

workload type in all run-time exclusion rules because any workload could run inside
unlabeled domains.

To prevent A-Bank and B-Bank workloads (including their departmentalworkloads)
from running simultaneously on the same hypervisor system, select the organization
“A-Bank” and, while pressing the<CTRL>-key, select the organization “B-Bank”. Be-
ing cautious, we also prevent unlabeled workloads from running with anyof those
workloads by pressing the<CTRL>-key and selecting “UNLABELED ”. Now
press the button named “Create run-time exclusion rule from selection”. A popup
window will ask for the name for this run-time exclusion rule (enter a name or just hit
<ENTER>). A rule will appear on the right panel. The name is used as reference only
and does not affect access control decisions.

Please repeat this process to create another run-time exclusion rule for the department
workloads “A-Bank.SecurityUnderwriting”, “A-Bank.MarketAnalysis”. Also add the
“ UNLABELED ” workload type to this conflict set.

The resulting layout of your window should be similar to Figure 10.2. Save thiswork-
load definition by selecting “Save Workload Definition as ...” in the “File” menu. This
workload definition can be later refined if required.

Translating the workload definition into an sHype/Xen access controlpolicy. To
translate the workload definition into a access control policy understood byXen, please
select the “Save as Xen ACM Security Policy” in the “File” menu. Enter the following
policy name in the popup window:mytest . If you are running ezPolicy in Domain-
0, the resulting policy file mytestsecurity-policy.xml will automatically be placed into
the right directory (/etc/xen/acm-security/policies/). If you run the tool on another sys-
tem, then you need to copy the resulting policy file into Domain-0 before continuing.
See Section 10.3.1 for naming conventions of security policies.

Note: The support for__UNLABELED__domains and resources is meant to help transitioning from an uncontrolled

environment to a workload-protected environment by startingwith unlabeled domains and resources and then step-

by-step labeling domains and resources. Once all workloads are labeled, the__UNLABELED__type can simply be

removed from the Domain-0 label or from the policy through a policy update. Section 10.3.5 will show how unlabeled

domains can be disabled by updating themytest policy at run-time.

10.2.3 Deploying a WLP Policy

To deploy the workload protection policy we created in Section 10.2.2, we create a
policy representation (mytest.bin), load it into the Xen hypervisor, and configure Xen
to also load this policy during reboot.

The following command translates the source policy representation into a format that
can be loaded into Xen with sHype/ACM support, activates the policy, and configures

52

this policy for future boot cycles into the boot sequence. Please refer tothexm man
page for further details:

(5) # xm setpolicy ACM mytest

Successfully set the new policy.

Supported security subsystems : ACM

Policy name : mytest

Policy type : ACM

Version of XML policy : 1.0

Policy configuration : loaded, activated for boot

Alternatively, if installing the policy fails (e.g., because it cannot identify the Xen boot
entry), you can manually install the policy in 3 steps a-c.

(Alternatively to 5 - step a) Manually copy the policy binary file into the boot directory:

cp /etc/xen/acm-security/policies/mytest.bin /boot/m ytest.bin

(Alternatively to 5 - step b) Manually add a module line to your Xen boot entry so that
grub loads this policy file during startup:

title XEN Devel with 2.6.18.8
kernel /xen.gz
module /vmlinuz-2.6.18.8-xen root=/dev/sda3 ro console= tty0
module /initrd-2.6.18.8-xen.img
module /mytest.bin

(Alternatively to 5 - step c) Reboot. Xen will choose the bootstrap label defined in the
policy as Domain-0 label during reboot. After reboot, you can re-label Domain-0 at
run-time, cf Section 10.2.7.

Assuming that command (5) succeeded or you followed the alternative instructions
above, you should see the new policy and label appear when listing domains:

xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 941 1 r----- 81.5 ACM:mytest:SystemManagement

If the security label at the end of the line says “INACTIVE” then the security is not
enabled. Verify the previous steps. Note: Domain-0 is assigned a defaultlabel (see
bootstrap policy attribute explained in Section 10.3). All other domains must be
explicitly labeled, which we describe in detail below.

10.2.4 Labeling Unmanaged User Domains

Unmanaged domains are started in Xen by using a configuration file. Please refer to
Section 10.2.8 if you are using managed domains.

The following configuration file definesdomain1 :

cat domain1.xm
kernel= "/boot/vmlinuz-2.6.18.8-xen"
memory = 128
name = "domain1"

53

vif = [’’]
dhcp = "dhcp"
disk = [’file:/home/xen/dom_fc5/fedora.fc5.img,sda1,w ’, \

’file:/home/xen/dom_fc5/fedora.fc5.swap,sda2,w’]
root = "/dev/sda1 ro xencons=tty"

Every domain must be associated with a security label before it can start onsHype/Xen.
Otherwise, sHype/Xen would not be able to enforce the policy consistently.Our
mytest policy is configured so that Xen assigns a default label__UNLABELED__

to domains and resources that have no label and supports them in a controlled manner.
Since neither the domain, nor the resources are (yet) labeled, this domain can start
under themytest policy:

xm create domain1.xm
Using config file "./domain1.xm".
Started domain domain1

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 1 128 1 -b---- 0.7 ACM:mytest:__UNLABELED__
Domain-0 0 875 1 r----- 84.6 ACM:mytest:SystemManagement

Please shutdown domain1 so that we can move it into the protection domain of work-
loadA-Bank .

xm shutdown domain1
(wait some seconds until the domain has shut down)

#xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 875 1 r----- 86.4 ACM:mytest:SystemManagement

We assume that the processing in domain1 contributes to theA-Bank workload. We
explore now how to transition this domain into the “A-Bank” workload-protection.
The following command prints all domain labels available in the active policy:

xm labels
A-Bank
A-Bank.MarketAnalysis
A-Bank.SecurityUnderwriting
AutoCorp
B-Bank
SystemManagement
__UNLABELED__

Now labeldomain1 with the A-Bank label and anotherdomain2 with the B-Bank
label. Please refer to the xm man page for further information.

(6) # xm addlabel A-Bank dom domain1.xm

xm addlabel B-Bank dom domain2.xm

Let us try to start the domain again:

xm create domain1.xm
Using config file "./domain1.xm".
Error: VM’s access to block device ’file:/home/xen/dom_fc 5/fedora.fc5.img’ denied

This error indicates thatdomain1 , if started, would not be able to access its image

54

and swap files because they are not labeled. This makes sense becauseto confine
workloads, access of domains to resources must be controlled. Otherwise, domains
that are not allowed to communicate or run simultaneously could share data through
storage resources.

10.2.5 Labeling Resources

You can use thexm labels type=res command to list available resource la-
bels. Let us assign the A-Bank resource label to thedomain1 image file representing
/dev/sda1 and to its swap file:

(7) # xm addlabel A-Bank res \

file:/home/xen/dom_fc5/fedora.fc5.img

xm addlabel A-Bank res \

file:/home/xen/dom_fc5/fedora.fc5.swap

The following command lists all labeled resources on the system, e.g., to lookup or
verify the labeling:

xm resources
file:/home/xen/dom_fc5/fedora.fc5.swap

type: ACM
policy: mytest

label: A-Bank
file:/home/xen/dom_fc5/fedora.fc5.img

type: ACM
policy: mytest

label: A-Bank

Startingdomain1 will now succeed:

xm create domain1.xm
Using config file "./domain1.xm".
Started domain domain1

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 3 128 1 -b---- 0.8 ACM:mytest:A-Bank
Domain-0 0 875 1 r----- 90.9 ACM:mytest:SystemManagement

Currently, if a labeled resource is moved to another location, the label must first be
manually removed, and after the move re-attached using the xm commandsrmlabel

andaddlabel respectively. Please see Section 10.4 for further details.

(8) Label the resources of domain2 as B-Bank

but please do not start this domain yet.

10.2.6 Testing The Xen Workload Protection

We are about to demonstrate the sHype/Xen workload protection by verifying

55

• that user domains with conflicting workloads cannot run simultaneously

• that user domains cannot access resources of workloads other than the one they
are associated with

• that user domains cannot exchange network packets if they are not associated
with the same workload type (not yet supported in Xen)

Test 1: Run-time exclusion rules. We assume thatdomain1 with the A-Bank la-
bel is still running. Whiledomain1 is running, the run-time exclusion set of our
policy implies thatdomain2 cannot start because the label ofdomain1 includes
the CHWALL type A-Bank and the label ofdomain2 includes the CHWALL type B-
Bank. The run-time exclusion rule of our policy enforces that A-Bank and B-Bank can-
not run at the same time on the same hypervisor platform. Once domain1 is stopped,
saved, or migrated to another platform,domain2 can start. Oncedomain2 is started,
however,domain1 can no longer start or resume on this system. When creating the
Chinese Wall types for the workload labels, the ezPolicy tool policy translation com-
ponent ensures that department workloads inherit all the organization types (and with
it any organization exclusions).

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 3 128 1 -b---- 0.8 ACM:mytest:A-Bank
Domain-0 0 875 1 r----- 90.9 ACM:mytest:SystemManagement

xm create domain2.xm
Using config file "./domain2.xm".
Error: ’Domain in conflict set with running domains’

xm shutdown domain1
(wait some seconds until domain 1 is shut down)

xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 873 1 r----- 95.3 ACM:mytest:SystemManagement

xm create domain2.xm
Using config file "./domain2.xm".
Started domain domain2

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain2 5 164 1 -b---- 0.3 ACM:mytest:B-Bank
Domain-0 0 839 1 r----- 96.4 ACM:mytest:SystemManagement

xm create domain1.xm
Using config file "domain1.xm".
Error: ’Domain in conflict with running domains’

xm shutdown domain2
xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 839 1 r----- 97.8 ACM:mytest:SystemManagement

56

You can verify that domains with AutoCorp label can run together with domainsla-
beled A-Bank or B-Bank.

Test2: Resource access.In this test, we will re-label the swap file fordomain1

with theB-Bank resource label. In a real environment, the swap file must be sanitized
(scrubbed/zeroed) before it is reassigned to prevent data leaks from the A-Bank to the
B-Bank workload through the swap file.

We expect thatdomain1 will no longer start because it cannot access this resource.
This test checks the sharing abilities of domains, which are defined by the Simple Type
Enforcement Policy component.

xm rmlabel res file:/home/xen/dom_fc5/fedora.fc5.swap

xm addlabel B-Bank res file:/home/xen/dom_fc5/fedora.f c5.swap

xm resources
file:/home/xen/dom_fc5/fedora.fc5.swap

type: ACM
policy: mytest

label: B-Bank
file:/home/xen/dom_fc5/fedora.fc5.img

type: ACM
policy: mytest

label: A-Bank

xm create domain1.xm
Using config file "./domain1.xm".
Error:
VM’s access to block device ’file:/home/xen/dom_fc5/fedo ra.fc5.swap’ denied

The resource authorization checks are performed before the domain is actually started
so that failures during the startup are prevented. A domain is only started if all the
resources specified in its configuration are accessible.

Test 3: Communication. In this test we would verify that two domains with labels
A-Bank and B-Bank cannot exchange network packets by using the ’ping’ connectivity
test. It is also related to the STE policy.Note: sHype/Xen does control direct commu-
nication between domains. However, domains associated with different workloads can
currently still communicate through the Domain-0 virtual network. We are working
on the sHype/ACM controls for local and remote network traffic through Domain-0.
Please monitor the xen-devel mailing list for updated information.

10.2.7 Labeling Domain-0 –or– Restricting System Authorization

The major use case for explicitly labeling or relabeling Domain-0 is to restrict orex-
tend which workload types can run on a virtualized Xen system. This enablesflexible
partitioning of the physical infrastructure as well as the workloads running on it in a
multi-platform environment.

57

In case no Domain-0 label is explicitly stated, we automatically assigned Domain-0the
SystemManagement label, which includes all STE (workload) types that are known
to the policy. In effect, the Domain-0 label authorizes the Xen system to run only
those workload types, whose STE types are included in the Domain-0 label. Hence,
choosing theSystemManagement label for Domain-0 permits any labeled domain
to run. Resetting the label for Domain-0 at boot or run-time to a label with a subset of
the known STE workload types restricts which user domains can run on this system.
If Domain-0 is relabeled at run-time, then the new label must at least include all STE
types of those domains that are currently running. The operation fails otherwise. This
requirement ensures that the system remains in a valid security configuration after re-
labelling.

Restricting the Domain-0 authorization through the label creates a flexible policy-
driven way to strongly partition the physical infrastructure and the workloads running
on it. This partitioning will be automatically enforced during migration, start, or re-
sume of domains and simplifies the security management considerably. Stronglycom-
peting workloads can be forced to run on separate physical infrastructure and become
less depend on the domain isolation capabilities of the hypervisor.

First, we relabel the swap image back to A-Bank and then start up domain1:

xm rmlabel res file:/home/xen/dom_fc5/fedora.fc5.swap

xm addlabel A-Bank res file:/home/xen/dom_fc5/fedora.f c5.swap

xm create domain1.xm
Using config file "./domain1.xm".
Started domain domain1

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 7 128 1 -b---- 0.7 ACM:mytest:A-Bank
Domain-0 0 839 1 r----- 103.1 ACM:mytest:SystemManagement

The following command will restrict the Xen system to only run STE types included
in the A-Bank label.

xm addlabel A-Bank mgt Domain-0
Successfully set the label of domain ’Domain-0’ to ’A-Bank’ .

xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 839 1 r----- 103.7 ACM:mytest:A-Bank
domain1 7 128 1 -b---- 0.7 ACM:mytest:A-Bank

In our example policy in Figure 10.4, this means that onlyA-Bank domains and
workloads (types) can run after the successful completion of this commandbecause
theA-Bank label includes only a single STE type, namelyA-Bank . This command
fails if any running domain has an STE type in its label that is not included in the
A-Bank label.

If we now label a domain3 with AutoCorp, it cannot start because Domain-0is no
longer authorized to run the workload typeAutoCorp .

58

xm addlabel AutoCorp dom domain3.xm
(remember to label its resources, too)

xm create domain3.xm
Using config file "./domain3.xm".
Error: VM is not authorized to run.

xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 839 1 r----- 104.7 ACM:mytest:A-Bank
domain1 7 128 1 -b---- 0.7 ACM:mytest:A-Bank

At this point, unlabeled domains cannot start either. Let domain4.xm describe an
unlabeled domain, then trying to start domain4 will fail:

xm getlabel dom domain4.xm
Error: ’Domain not labeled’

xm create domain4.xm
Using config file "./domain4.xm".
Error: VM is not authorized to run.

Relabeling Domain-0 with the SystemManagement label will enable domain3 to start.

xm addlabel SystemManagement mgt Domain-0
Successfully set the label of domain ’Domain-0’ to ’SystemM anagement’.

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 7 128 1 -b---- 0.8 ACM:mytest:A-Bank
Domain-0 0 839 1 r----- 106.6 ACM:mytest:SystemManagement

xm create domain3.xm
Using config file "./domain3.xm".
Started domain domain3

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 7 128 1 -b---- 0.8 ACM:mytest:A-Bank
domain3 8 164 1 -b---- 0.3 ACM:mytest:AutoCorp
Domain-0 0 711 1 r----- 107.6 ACM:mytest:SystemManagement

10.2.8 Labeling Managed User Domains

Xend has been extended with functionality to manage domains along with their con-
figuration information. Such domains are configured and started via Xen-API calls.
Since managed domains do not have an associated xm configuration file, theexisting
addlabel command, which adds the security label into a domain’s configuration
file, will not work for such managed domains.

Therefore, we have extended thexm addlabel andxm rmlabel subcommands
to enable adding security labels to and removing security labels from manageddo-
main configurations. The following example shows how theA-Bank label can be
assigned to the xend-managed domain configuration ofdomain1 . Removing labels
from managed user domain configurations works similarly.

Below, we show a dormant configuration of the managed domain1 with ID"-1" and
state"-----" before labeling:

59

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 -1 128 1 ------ 0.0 ACM:mytest:__UNLABELED__
Domain-0 0 711 1 r----- 128.4 ACM:mytest:SystemManagement

Now we label the managed domain:

xm addlabel A-Bank mgt domain1
Successfully set the label of the dormant domain ’domain1’ t o ’A-Bank’.

After labeling, you can see that the security label is part of the domain configuration:

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 -1 128 1 ------ 0.0 ACM:mytest:A-Bank
Domain-0 0 711 1 r----- 129.7 ACM:mytest:SystemManagement

This command extension does not support relabeling of individual running user do-
mains for several reasons. For one, because of the difficulty to revoke resources in
cases where a running domain’s new label does not permit access to resources that
were accessible under the old label. Another reason is that changing the label of a sin-
gle domain of a workload is rarely a good choice and will affect the workload isolation
properties of the overall workload.

However, the name and contents of the label associated with running domainscan
be indirectly changed through a global policy change, which will update thewhole
workload consistently (domains and resources), cf. Section 10.3.5.

10.3 Xen Access Control Policy

This section describes the sHype/Xen access control policy in detail. It gives enough
information to enable the reader to write custom access control policies and touse the
available Xen policy tools. The policy language is expressive enough to specify most
symmetric access relationships between domains and resources efficiently.

The Xen access control policy consists of two policy components. The firstcom-
ponent, called Simple Type Enforcement (STE) policy, controls the sharingbetween
running domains, i.e., communication or access to shared resources. The second com-
ponent, called Chinese Wall (CHWALL) policy, controls which domains can run si-
multaneously on the same virtualized platform. The CHWALL and STE policy com-
ponents complement each other. The XML policy file includes all information needed
by Xen to enforce those policies.

Figures 10.3 and 10.4 show the fully functional but very simple example Xen security
policy that is created by ezPolicy as shown in Figure 10.2. The policy can distinguish
the 6 workload types shown in lines 11-17 in Fig. 10.3. The whole XML Security
Policy consists of four parts:

1. Policy header including the policy name

2. Simple Type Enforcement block

60

01 <?xml version="1.0" ?>
02 <!-- Auto-generated by ezPolicy -->
03 <SecurityPolicyDefinition ...">
04 <PolicyHeader>
05 <PolicyName>mytest</PolicyName>
06 <Date>Mon Nov 19 22:51:56 2007</Date>
07 <Version>1.0</Version>
08 </PolicyHeader>
09 <SimpleTypeEnforcement>
10 <SimpleTypeEnforcementTypes>
11 <Type>SystemManagement</Type>
12 <Type>__UNLABELED__</Type>
13 <Type>A-Bank</Type>
14 <Type>A-Bank.SecurityUnderwriting</Type>
15 <Type>A-Bank.MarketAnalysis</Type>
16 <Type>B-Bank</Type>
17 <Type>AutoCorp</Type>
18 </SimpleTypeEnforcementTypes>
19 </SimpleTypeEnforcement>
20 <ChineseWall priority="PrimaryPolicyComponent">
21 <ChineseWallTypes>
22 <Type>SystemManagement</Type>
23 <Type>__UNLABELED__</Type>
24 <Type>A-Bank</Type>
25 <Type>A-Bank.SecurityUnderwriting</Type>
26 <Type>A-Bank.MarketAnalysis</Type>
27 <Type>B-Bank</Type>
28 <Type>AutoCorp</Type>
29 </ChineseWallTypes>
30 <ConflictSets>
31 <Conflict name="RER">
32 <Type>A-Bank</Type>
33 <Type>B-Bank</Type>
34 <Type>__UNLABELED__</Type>
35 </Conflict>
36 <Conflict name="RER">
37 <Type>A-Bank.MarketAnalysis</Type>
38 <Type>A-Bank.SecurityUnderwriting</Type>
39 <Type>__UNLABELED__</Type>
40 </Conflict>
41 </ConflictSets>
42 </ChineseWall>

Figure 10.3: Example XML security policy file – Part I: Types and Rules Definition.

3. Chinese Wall Policy block

4. Label definition block

10.3.1 Policy Header and Policy Name

Lines 1-2 (cf Figure 10.3) include the usual XML header. The security policy def-
inition starts in Line 3 and refers to the policy schema. The XML-Schema defini-
tion for the Xen policy can be found in the file/etc/xen/acm-security/policies/security-
policy.xsd. Examples for security policies can be found in the example subdirectory.
The acm-security directory is only installed if ACM security is configured during in-
stallation (cf Section 10.2.1).

ThePolicy Header spans lines 4-8. It includes a date field and defines the policy

61

namemytest as well as the version of the XML. It can also include optional fields
that are not shown and are for future use (see schema definition).

The policy name serves two purposes: First, it provides a unique name forthe se-
curity policy. This name is also exported by the Xen hypervisor to the Xen man-
agement tools in order to ensure that both the Xen hypervisor and Domain-0enforce
the same policy. We plan to extend the policy name with a digital fingerprint of the
policy contents to better protect this correlation. Second, it implicitly points the xm
tools to the location where the XML policy file is stored on the Xen system. Re-
placing the colons in the policy name by slashes yields the local path to the policy file
starting from the global policy directory/etc/xen/acm-security/policies .
The last part of the policy name is the prefix for the XML policy file name, com-
pleted by-security_policy.xml . Our example policy with the namemytest

can be found in the XML policy file namedmytest-security_policy.xml

that is stored under the global policy directory. Another, preinstalled example pol-
icy namedexample.test can be found in thetest-security_policy.xml

under/etc/xen/acm-security/policies/example .

10.3.2 Simple Type Enforcement Policy Component

The Simple Type Enforcement (STE) policy controls which domains can communicate
or share resources. This way, Xen can enforce confinement of workload types by con-
fining the domains running those workload types and their resources. Themandatory
access control framework enforces its policy when domains access intended commu-
nication or cooperation means (shared memory, events, shared resources such as block
devices). It builds on top of the core hypervisor isolation, which restrictsthe ways of
inter-communication to those intended means. STE does not protect or intend topro-
tect from covert channels in the hypervisor or hardware; this is an orthogonal problem
that can be mitigated by using the Run-time Exclusion rules described above orby
fixing the problem leading to those covert channels in the core hypervisoror hardware
platform.

Xen controls sharing between domains on the resource and domain level because this
is the abstraction the hypervisor and its management understand naturally. While this
is coarse-grained, it is also very reliable and robust and it requires minimal changes
to implement mandatory access controls in the hypervisor. It enables platform- and
operating system-independent policies as part of a layered security approach.

Lines 11-17 (cf Figure 10.3) define the Simple Type Enforcement policy component.
Essentially, they define the workload type namesSystemManagement , A-Bank ,
AutoCorp etc. that are available in the STE policy component. The policy rules are
implicit: Xen permits two domains to communicate with each other if and only if their
security labels have at least one STE type in common. Similarly, Xen permits a user

62

domain to access a resource if and only if the labels of the domain and the resource
have at least one STE workload type in common.

10.3.3 Chinese Wall Policy Component

The Chinese Wall security policy interpretation of sHype enables users to prevent cer-
tain workloads from running simultaneously on the same hypervisor platform.Run-
time Exclusion rules (RER), also called Conflict Sets or Anti-Collocation rules,define
a set of workload types that are not permitted to run simultaneously on the samevir-
tualized platform. Of all the workloads specified in a Run-time Exclusion rule, at
most one type can run on the same hypervisor platform at a time. Run-time Exclusion
Rules implement a less rigorous variant of the original Chinese Wall securitycom-
ponent. They do not implement the *-property of the policy, which would require to
restrict also types that are not part of an exclusion rule once they are running together
with a type in an exclusion rule (http://www.gammassl.co.uk/topics/chinesewall.html
provides more information on the original Chinese Wall policy).

Xen considers theChineseWallTypes part of the label for the enforcement of the
Run-time Exclusion rules. It is illegal to define labels including conflicting Chinese
Wall types.

Lines 20-41 (cf Figure 10.3) define the Chinese Wall policy component. Lines 22-28
define the known Chinese Wall types, which coincide here with the STE typesdefined
above. This usually holds if the criteria for sharing among domains and sharing of the
hardware platform are the same. Lines 30-41 define one Run-time Exclusion rules, the
first of which is depicted below:

31 <Conflict name="RER">
32 <Type>A-Bank</Type>
33 <Type>B-Bank</Type>
34 <Type>__UNLABELED__</Type>
35 </Conflict>

Based on this rule, Xen enforces that only one of the typesA-Bank , B-Bank , or
__UNLABELED__will run on a single hypervisor platform at a time. For exam-
ple, once a domain assigned aA-Bank workload type is started, domains with the
B-Bank type or unlabeled domains will be denied to start. When the former domain
stops and no other domains with theA-Bank type are running, then domains with the
B-Bank type or unlabeled domains can start.

Xen maintains reference counts on each running workload type to keep track of which
workload types are running. Every time a domain starts or resumes, the reference count
on those Chinese Wall types that are referenced in the domain’s label areincremented.
Every time a domain is destroyed or saved, the reference counts of its Chinese Wall
types are decremented. sHype in Xen fully supports migration and live-migration,
which is subject to access control the same way as saving a domain on the source
platform and resuming it on the destination platform.

63

Here are some reasons why users might want to restrict workloads or domains from
sharing the system hardware simultaneously:

• Imperfect resource management or control might enable a compromised user
domain to starve other domains and the workload running in them.

• Redundant user domains might run the same workload to increase availability;
such domains should not run on the same hardware to avoid single points of
failure.

• Imperfect Xen core domain isolation might enable two rogue domains running
different workload types to use unintended and unknown ways (covert channels)
to exchange some bits of information. This way, they bypass the policed Xen ac-
cess control mechanisms. Such imperfections cannot be completely eliminated
and are a result of trade-offs between security and other design requirements.
For a simple example of a covert channel see http://www.multicians.org/timing-
chn.html. Such covert channels exist also between workloads running ondiffer-
ent platforms if they are connected through networks. The Xen Chinese Wall
policy provides an approximated “air-gap” between selected workload types.

10.3.4 Security Labels

To enable Xen to associate domains with workload types running in them, each domain
is assigned a security label that includes the workload types of the domain.

The SecurityLabelTemplate (cf Figure 10.4) defines the security labels that
can be associated with domains and resources when this policy is active (use the
xm labels type=any command described in Section 10.2.4 to list all available
labels).

The domain labels include Chinese Wall types while resource labels do not include
Chinese Wall types. TheSubjectLabels policy section defines the labels that
can be assigned to domains. The VM labelA-Bank.SecurityUnderwriting

in Figure 10.4) associates the domain that carries it with the workload STE type
A-Bank.SecurityUnderwriting and with the CHWALL typesA-Bank and
A-Bank.SecurityUnderwriting . The ezPolicy tool assumes that any depart-
ment workload will inherit any conflict set that is specified for its organization, i.e.,
if B-Bank is running, not onlyA-Bank but also all its departmental workloads are
prevented from running by this first run-time exclusion set. The separation of STE
and CHWALL types in the label definition ensures that all departmental workloads are
isolated from each other and from their generic organization workloads,while they are
sharing CHWALL types to simplify the formulation of run-time exclusion sets.

The bootstrap attribute of the<SubjectLabels> XML node in our example
policy shown in Figure 10.4 names the labelSystemManagement as the label that
Xen will assign to Domain-0 at boot time (if this policy is installed as boot policy). The

64

<SecurityLabelTemplate>
<SubjectLabels bootstrap="SystemManagement">
<VirtualMachineLabel>

<Name>SystemManagement</Name>
<SimpleTypeEnforcementTypes>

<Type>SystemManagement</Type>
<Type>__UNLABELED__</Type>
<Type>A-Bank</Type>
<Type>A-Bank.SecurityUnderwriting</Type>
<Type>A-Bank.MarketAnalysis</Type>
<Type>B-Bank</Type>
<Type>AutoCorp</Type>

</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>SystemManagement</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>__UNLABELED__</Name>
<SimpleTypeEnforcementTypes>

<Type>__UNLABELED__</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>__UNLABELED__</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>A-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>A-Bank</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>A-Bank.SecurityUnderwriting</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank.SecurityUnderwriting</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>A-Bank</Type>
<Type>A-Bank.SecurityUnderwriting</Type>

</ChineseWallTypes>
</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>A-Bank.MarketAnalysis</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank.MarketAnalysis</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>A-Bank</Type>
<Type>A-Bank.MarketAnalysis</Type>

</ChineseWallTypes>
</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>B-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>B-Bank</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>B-Bank</Type>
</ChineseWallTypes>

</VirtualMachineLabel>

<VirtualMachineLabel>
<Name>AutoCorp</Name>
<SimpleTypeEnforcementTypes>

<Type>AutoCorp</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>AutoCorp</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
</SubjectLabels>
<ObjectLabels>
<ResourceLabel>

<Name>SystemManagement</Name>
<SimpleTypeEnforcementTypes>

<Type>SystemManagement</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>__UNLABELED__</Name>
<SimpleTypeEnforcementTypes>

<Type>__UNLABELED__</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>A-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>A-Bank.SecurityUnderwriting</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank.SecurityUnderwriting</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>A-Bank.MarketAnalysis</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank.MarketAnalysis</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>B-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>B-Bank</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>AutoCorp</Name>
<SimpleTypeEnforcementTypes>

<Type>AutoCorp</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
</ObjectLabels>

</SecurityLabelTemplate>
</SecurityPolicyDefinition>

Figure 10.4: Example XML security policy file – Part II: Label Definition.

label of Domain-0 can be persistently changed at run-time with theaddlabel com-
mand, which adds an overriding option to the grub.conf boot entry (cf Section 10.2.7).
All user domains are assigned labels according to their domain configuration(see Sec-
tion 10.2.4 for examples of how to label domains).

TheObjectLabels depicted in Figure 10.4 can be assigned to resources when this
policy is active.

In general, user domains should be assigned labels that have only a singleSimple-
TypeEnforcement workload type. This way, workloads remain confined even if user
domains become rogue. Any domain that is assigned a label with multiple STE types

65

must be trusted to keep information belonging to the different STE types separate (con-
fined). For example, Domain-0 is assigned the bootstrap labelSystemManagement ,
which includes all existing STE types. Therefore, Domain-0 must take carenot to en-
able unauthorized information flow (eg. through block devices or virtual networking)
between domains or resources that are assigned different STE types.

Security administrators simply use the name of a label (specified in the<Name>field)
to associate a label with a domain (cf. Section 10.2.4). The types inside the label are
used by the Xen access control enforcement. While the name can be arbitrarily chosen
(as long as it is unique), it is advisable to choose the label name in accordance to the
security types included. Similarly, the STE and CHWALL types should be named
according to the workloads they represent. While the XML representation of the label
in the above example seems unnecessary flexible, labels in general must beable to
include multiple types.

We assume in the following example, thatA-Bank.SecurityUnderwriting

andA-Bank.MarketAnalysis workloads use virtual disks that are provided by a
virtual I/O domain hosting a physical storage device and carrying the following label:

<VirtualMachineLabel>
<Name>VIOServer</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank</Type>
<Type>A-Bank.SecurityUnderwriting</Type>
<Type>A-Bank.MarketAnalysis</Type>
<Type>VIOServer</Type>

</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>VIOServer</Type>
</ChineseWallTypes>

</VirtualMachineLabel>

This Virtual I/O domain (VIO) exports its virtualized disks by communicating to all
domains labeled with theA-Bank.SecurityUnderwriting , the A-Bank , or
theA-Bank.MarketAnalysis label. This requires the VIO domain to carry those
STE types. In addition, this label includes a newVIOServer type that can be used
to restrict direct access to the physical storage resource to the VIODomain.

In this example, the confinement of these A-Bank workloads depends on the VIO do-
main that must keep the data of those different workloads separate. The virtual disks
are labeled as well to keep track of their assignments to workload types (seeSec-
tion 10.2.5 for labeling resources) and enforcement functions inside the VIO domain
must ensure that the labels of the domain mounting a virtual disk and the virtual disk la-
bel share a common STE type. The VIO label carrying its own VIOServer CHWALL
type introduces the flexibility to permit the trusted VIO server to run together with
A-Bank.SecurityUnderwriting orA-Bank.MarketAnalysis workloads.

Alternatively, a system that has two hard-drives does not need a VIO domain but can
directly assign one hardware storage device to each of the workloads if the platform
offers an IO-MMU, cf Section 9.2. Sharing hardware through virtualized devices is a

66

trade-off between the amount of trusted code (size of the trusted computingbase) and
the amount of acceptable over-provisioning. This holds both for peripherals and for
system platforms.

10.3.5 Managing sHype/Xen Security Policies at Run-time

Removing the sHype/Xen Security Policy

When resetting the policy, no labeled domains can be running. Please stop orshutdown
all running labeled domains. Then you can reset the policy to the default policy using
theresetpolicy command:

xm getpolicy
Supported security subsystems : ACM
Policy name : mytest
Policy type : ACM
Version of XML policy : 1.0
Policy configuration : loaded, activated for boot

xm resetpolicy
Successfully reset the system’s policy.

xm getpolicy
Supported security subsystems : ACM
Policy name : DEFAULT
Policy type : ACM
Version of XML policy : 1.0
Policy configuration : loaded

xm resources
file:/home/xen/dom_fc5/fedora.fc5.swap

type: INV_ACM
policy: mytest

label: A-Bank
file:/home/xen/dom_fc5/fedora.fc5.img

type: INV_ACM
policy: mytest

label: A-Bank

As thexm resources output shows, all resource labels have invalidated type in-
formation but their semantics remain associated with the resources so that theycan
later on either be relabeled with semantically equivalent labels or sanitized andreused
(storage resources).

At this point, the system is in the same initial state as after configuring XSM and
sHype/ACM and rebooting the system without a specific policy. No user domains can
run.

Changing to a Different sHype/Xen Security Policy

The easiest way to change to a different, unrelated policy is to reset the system policy
and then set the new policy. Please consider that the existing domain and resource

67

labels become invalid at this point. Please refer to the next section for an example of
how to seamlessly update an active policy at run-time without invalidating labels.

xm resetpolicy
Successfully reset the system’s policy.

xm setpolicy ACM example.test
Successfully set the new policy.
Supported security subsystems : ACM
Policy name : example.test
Policy type : ACM
Version of XML policy : 1.0
Policy configuration : loaded, activated for boot

xm labels
CocaCola
PepsiCo
SystemManagement
VIO
xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 873 1 r----- 56.3 ACM:example.test:SystemManag ement

xm resetpolicy
Successfully reset the system’s policy.

xm getpolicy
Supported security subsystems : ACM
Policy name : DEFAULT
Policy type : ACM
Version of XML policy : 1.0
Policy configuration : loaded

xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 873 1 r----- 57.2 ACM:DEFAULT:SystemManagement

xm setpolicy ACM mytest
Successfully set the new policy.
Supported security subsystems : ACM
Policy name : mytest
Policy type : ACM
Version of XML policy : 1.0
Policy configuration : loaded, activated for boot

xm labels
A-Bank
A-Bank.MarketAnalysis
A-Bank.SecurityUnderwriting
AutoCorp
B-Bank
SystemManagement
__UNLABELED__

xm list --label
Name ID Mem VCPUs State Time(s) Label
Domain-0 0 873 1 r----- 58.0 ACM:mytest:SystemManagement

The described way of changing policies by resetting the existing policy is useful for
testing different policies. For real deployment environments, a policy update as de-

68

scribed in the following section is more appropriate and can be applied seamlessly at
run-time while user domains are running.

Update an sHype/Xen Security Policy at Run-time

Once an ACM security policy is activated (loaded into the Xen hypervisor),the policy
may be updated at run-time without the need to re-boot the system. The XML update-
policy contains several additional information fields that are required to safely link
the new policy contents to the old policy and ensure a consistent transformation of
the system security state from the old to the new policy. Those additional fieldsare
required for policies that are updating an existing policy at run-time.

The major benefit of policy updates is the ability to add, delete, or rename workload
types, labels, and conflict sets (run-time exclusion rules) to accommodate changes in
the managed virtual environment without the need to reboot the Xen system. When a
new policy renames labels of the current policy, the labels attached to resources and
domains are automatically updated during a successful policy update.

We have manually crafted an update policy for themytest security policy and stored
it in the file mytestupdate-securitypolicy.xml in the policies directory. We will dis-
cuss this policy in detail before using it to update a running sHype/Xen system. The
following figures contain the whole contents of the update policy file.

Figure 10.5 shows the policy header of an update-policy and the newFromPolicy

XML node. For the policy update to succeed, the policy name and the policy ver-
sion fields of theFromPolicy XML node must exactly match those of the currently
enforced policy. This ensures a controlled update path of the policy.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Auto-generated by ezPolicy -->
<SecurityPolicyDefinition xmlns="http://www.ibm.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:schemaLocation="http://www.ibm.com ../../securit y_policy.xsd ">

<PolicyHeader>
<PolicyName>mytest</PolicyName>
<Date>Tue Nov 27 21:53:45 2007</Date>
<Version>1.1</Version>
<FromPolicy>

<PolicyName>mytest</PolicyName>
<Version>1.0</Version>

</FromPolicy>
</PolicyHeader>

Figure 10.5: XML security policy update – Part I: Updated Policy Header.

The version number of the new policy, which is shown in the node following theDate

node, must be a logical increment to the current policy’s version. Therefore at least the
minor number of the policy version must be incremented. This ensures that a policy
update is applied only to exactly the policy for which this update was created and
minimizes unforseen side-effects of policy updates.

69

Types and Conflic Sets The type names and the assignment of types to labels or
conflict sets (run-time exclusion rules) can simply be changed consistently throughout
the policy. Types, as opposed to labels, are not directly associated or referenced outside
the policy so they do not need to carry their history in a “From” field. The figure
below shows the update for the types and conflict sets. The__UNLABELED__type
is removed to disable support for running unlabeled domains. Additionally, we have
renamed the twoA-Bank department types with abbreviated namesA-Bank.SU and
A-Bank.MA . You can also see how those type names are consistently changed within
the conflict set definition.

<SimpleTypeEnforcement>
<SimpleTypeEnforcementTypes>

<Type>SystemManagement</Type>
<Type>A-Bank</Type>
<Type>A-Bank.SU</Type>
<Type>A-Bank.MA</Type>
<Type>B-Bank</Type>
<Type>AutoCorp</Type>

</SimpleTypeEnforcementTypes>
</SimpleTypeEnforcement>

<ChineseWall priority="PrimaryPolicyComponent">
<ChineseWallTypes>

<Type>SystemManagement</Type>
<Type>A-Bank</Type>
<Type>A-Bank.SU</Type>
<Type>A-Bank.MA</Type>
<Type>B-Bank</Type>
<Type>AutoCorp</Type>

</ChineseWallTypes>

<ConflictSets>
<Conflict name="RER">

<Type>A-Bank</Type>
<Type>B-Bank</Type>

</Conflict>
<Conflict name="RER">

<Type>A-Bank.MA</Type>
<Type>A-Bank.SU</Type>

</Conflict>
</ConflictSets>

</ChineseWall>

Figure 10.6: XML security policy update – Part II: Updated Types and Conflict Sets.

In the same way, new types can be introduced and new conflict sets can bedefined by
simply adding the types or conflict sets to the update policy.

Labels Virtual machine and resource labels of an existing policy can be deleted
through a policy update simply by omitting them in the update-policy. However, if
a currently running virtual machine or a currently used resource is labeled with a label
not stated in the update-policy, then the policy update is rejected. This ensures that a
policy update leaves the system in a consistent security state.

A policy update also enables the renaming of virtual machine and resource labels.
Linking the old label name with the new label name is achieved through thefrom at-

70

tribute in theVirtualMachineLabel or ResourceLabel nodes in the update-
policy. Figure 10.7 shown how subject and resource labels are updatedfrom their old
nameA-Bank.SecurityUnterwriting to their new nameA-Bank.SU using
thefrom attribute.

<SecurityLabelTemplate>
<SubjectLabels bootstrap="SystemManagement">
<VirtualMachineLabel>

<Name>SystemManagement</Name>
<SimpleTypeEnforcementTypes>

<Type>SystemManagement</Type>
<Type>A-Bank</Type>
<Type>A-Bank.SU</Type>
<Type>A-Bank.MA</Type>
<Type>B-Bank</Type>
<Type>AutoCorp</Type>

</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>SystemManagement</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>A-Bank-WL</Name>
<SimpleTypeEnforcementTypes>

<Type>SystemManagement</Type>
<Type>A-Bank</Type>
<Type>A-Bank.SU</Type>
<Type>A-Bank.MA</Type>

</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>SystemManagement</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>A-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>A-Bank</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
<VirtualMachineLabel>

<Name from="A-Bank.SecurityUnderwriting">
A-Bank.SU</Name>

<SimpleTypeEnforcementTypes>
<Type>A-Bank.SU</Type>

</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>A-Bank</Type>
<Type>A-Bank.SU</Type>

</ChineseWallTypes>
</VirtualMachineLabel>

<VirtualMachineLabel>
<Name from="A-Bank.MarketAnalysis">

A-Bank.MA</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank.MA</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>A-Bank</Type>
<Type>A-Bank.MA</Type>

</ChineseWallTypes>
</VirtualMachineLabel>

<VirtualMachineLabel>
<Name>B-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>B-Bank</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>B-Bank</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
<VirtualMachineLabel>

<Name>AutoCorp</Name>
<SimpleTypeEnforcementTypes>

<Type>AutoCorp</Type>
</SimpleTypeEnforcementTypes>
<ChineseWallTypes>

<Type>AutoCorp</Type>
</ChineseWallTypes>

</VirtualMachineLabel>
</SubjectLabels>

<ObjectLabels>
<ResourceLabel>

<Name>SystemManagement</Name>
<SimpleTypeEnforcementTypes>

<Type>SystemManagement</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>A-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>A-Bank</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name from="A-Bank.SecurityUnderwriting">
A-Bank.SU</Name>

<SimpleTypeEnforcementTypes>
<Type>A-Bank.SU</Type>

</SimpleTypeEnforcementTypes>
</ResourceLabel>
<ResourceLabel>

<Name from="A-Bank.MarketAnalysis">
A-Bank.MA</Name>

<SimpleTypeEnforcementTypes>
<Type>A-Bank.MA</Type>

</SimpleTypeEnforcementTypes>
</ResourceLabel>
<ResourceLabel>

<Name>B-Bank</Name>
<SimpleTypeEnforcementTypes>

<Type>B-Bank</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
<ResourceLabel>

<Name>AutoCorp</Name>
<SimpleTypeEnforcementTypes>

<Type>AutoCorp</Type>
</SimpleTypeEnforcementTypes>

</ResourceLabel>
</ObjectLabels>

</SecurityLabelTemplate>
</SecurityPolicyDefinition>

Figure 10.7: XML security policy update – Part III: Updated Label Definition.

The updated label definition also includes a new labelA-Bank-WL that includes all
STE types related to A-Bank. Its CHWALL type isSystemManagement . This
indicates that this label is designed as Domain-0 label. A Xen system can be restricted
to only run A-Bank related workloads by relabeling Domain-0 with theA-Bank-WL

label.

We assume that the update-policy shown in Figures 10.5, 10.6 and 10.7 is stored in the

71

XML file mytest update-securitypolicy.xml located in the ACM policy directory. See
Section 10.3.1 for information about policy names and locations.

The followingxm setpolicy command updates the active ACM security policy at
run-time.

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 2 128 1 -b---- 0.6 ACM:mytest:A-Bank
domain4 3 164 1 -b---- 0.3 ACM:mytest:A-Bank.SecurityUnde rwriting
Domain-0 0 711 1 r----- 71.8 ACM:mytest:SystemManagement

xm resources
file:/home/xen/dom_fc5/fedora.fc5.swap

type: ACM
policy: mytest
label: A-Bank

file:/home/xen/dom_fc5/fedora.fc5.img
type: ACM

policy: mytest
label: A-Bank

xm setpolicy ACM mytest_update
Successfully set the new policy.
Supported security subsystems : ACM
Policy name : mytest
Policy type : ACM
Version of XML policy : 1.1
Policy configuration : loaded, activated for boot

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 2 128 1 -b---- 0.7 ACM:mytest:A-Bank
domain4 3 164 1 -b---- 0.3 ACM:mytest:A-Bank.SU
Domain-0 0 711 1 r----- 72.8 ACM:mytest:SystemManagement

xm labels
A-Bank
A-Bank-WL
A-Bank.MA
A-Bank.SU
AutoCorp
B-Bank

xm resources
file:/home/xen/dom_fc5/fedora.fc5.swap

type: ACM
policy: mytest

label: A-Bank
file:/home/xen/dom_fc5/fedora.fc5.img

type: ACM
policy: mytest

label: A-Bank

After successful completion of this command,xm list --label shows that the
labels of running domains changed to their new names.xm labels shows that new
labelsA-Bank.SU andA-Bank.AM are now available in the policy. The resource
labels remain valid after the successful update asxm resources confirms.

72

Thesetpolicy command fails if the new policy is inconsistent with the current one
or the policy is inconsistent internally (e.g., types are renamed in the type definition
but not in the label definition part of the policy). In this case, the old policy remains
active.

After relabeling Domain-0 with the newA-Bank-WL label, we can no longer run
domains labeledB-Bank or AutoCorp since their STE types are not a subset of the
new Domain-0 label.

xm addlabel A-Bank-WL mgt Domain-0
Successfully set the label of domain ’Domain-0’ to ’A-Bank- WL’.

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 2 128 1 -b---- 0.8 ACM:mytest:A-Bank
Domain-0 0 711 1 r----- 74.5 ACM:mytest:A-Bank-WL
domain4 3 164 1 -b---- 0.3 ACM:mytest:A-Bank.SU

xm getlabel dom domain3.xm
policytype=ACM,policy=mytest,label=AutoCorp

xm create domain3.xm
Using config file "./domain3.xm".
Error: VM is not authorized to run.

xm addlabel SystemManagement mgt Domain-0
Successfully set the label of domain ’Domain-0’ to ’SystemM anagement’.

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 2 128 1 -b---- 0.8 ACM:mytest:A-Bank
domain4 3 164 1 -b---- 0.3 ACM:mytest:A-Bank.SU
Domain-0 0 709 1 r----- 76.4 ACM:mytest:SystemManagement

xm create domain3.xm
Using config file "./domain3.xm".
Started domain domain3

xm list --label
Name ID Mem VCPUs State Time(s) Label
domain1 2 128 1 -b---- 0.8 ACM:mytest:A-Bank
domain4 3 164 1 -b---- 0.3 ACM:mytest:A-Bank.SU
domain3 4 164 1 -b---- 0.3 ACM:mytest:AutoCorp
Domain-0 0 547 1 r----- 77.5 ACM:mytest:SystemManagement

In the same manner, you can add new labels to support new workloads andadd, delete,
or rename workload types (STE and/or CHWALL types) simply by changing the com-
position of labels. Another use case is to add new workload types to the current
Domain-0 label to enable them to run. Conflict sets (run-time exclusion rules)can
be simply omitted or added. The policy and label changes become active at once and
new workloads can be run in protected mode without rebooting the Xen system.

In all these cases, if any running user domain would–under the new policy–not be
allowed to run or would not be allowed to access any of the resources it currently uses,
then the policy update is rejected. In this case, you can stop domains that conflict with

73

the new policy and update the policy afterwards. The old policy remains active until a
policy update succeeds or Xen is re-booted into a new policy.

10.3.6 Tools For Creating sHype/Xen Security Policies

To create a security policy for Xen, you can use one of the following tools:

• ezPolicy GUI tool – start writing policies

• xensec_gen tool – refine policies created withezPolicy

• text or XML editor

We use theezPolicy tool in Section 10.2.2 to quickly create a workload protection
policy. If desired, the resulting XML policy file can be loaded into thexensec_gen

tool to refine it. It can also be directly edited using an XML editor. Any XML policy
file is verified against the security policy schema when it is translated (see Subsec-
tion 10.2.3).

10.4 Current Limitations

The sHype/ACM configuration for Xen is work in progress. There is ongoing work for
protecting virtualized resources and planned and ongoing work for protecting access
to remote resources and domains. The following sections describe limitations ofsome
of the areas into which access control is being extended.

10.4.1 Network Traffic

Local and remote network traffic is currently not controlled. Solutions to add sHype/ACM
policy enforcement to the virtual network exist but need to be discussed before they
can become part of Xen. Subjecting external network traffic to the ACM security pol-
icy is work in progress. Manually setting up filters in domain 0 is required for now but
does not scale well.

10.4.2 Resource Access and Usage Control

Enforcing the security policy across multiple hypervisor systems and on access to
remote shared resources is work in progress. Extending access control to new types of
resources is ongoing work (e.g. network storage).

On a single Xen system, information about the association of resources andsecurity la-
bels is stored in/var/lib/xend/security/policies/resource_labels .
This file relates a full resource path with a security label. This association is weak and

74

will break if resources are moved or renamed without adapting the label file. Improv-
ing the protection of label-resource relationships is ongoing work.

Controlling resource usage and enforcing resource limits in general is ongoing work
in the Xen community.

10.4.3 Domain Migration

Labels on domains are enforced during domain migration and the destination hyper-
visor will ensure that the domain label is valid and the domain is permitted to run
(considering the Chinese Wall policy rules) before it accepts the migration.However,
the network between the source and destination hypervisor as well as bothhypervisors
must be trusted. Architectures and prototypes exist that both protect the network con-
nection and ensure that the hypervisors enforce access control consistently but patches
are not yet available for the main stream.

10.4.4 Covert Channels

The sHype access control aims at system independent security policies.It builds on top
of the core hypervisor isolation. Any covert channels that exist in the core hypervisor
or in the hardware (e.g., shared processor cache) will be inherited. Ifthose covert
channels are not the result of trade-offs between security and other system properties,
then they are most effectively minimized or eliminated where they are caused. sHype
offers however some means to mitigate their impact, e.g., run-time exclusion rules (cf
Section 10.2.2) or limiting the system authorization (cf Section 10.2.7).

75

76

Part III

Reference

77

Chapter 11

Build and Boot Options

This chapter describes the build- and boot-time options which may be used to tailor
your Xen system.

11.1 Top-level Configuration Options

Top-level configuration is achieved by editing one of two files:Config.mk andMakefile .

The former allows the overall build target architecture to be specified. Youwill typi-
cally not need to modify this unless you are cross-compiling. Additional configuration
options are documented in theConfig.mk file.

The top-levelMakefile is chiefly used to customize the set of kernels built. Look for
the line:

KERNELS ?= linux-2.6-xen0 linux-2.6-xenU

Allowable options here are any kernels which have a corresponding buildconfiguration
file in thebuildconfigs/ directory.

11.2 Xen Build Options

Xen provides a number of build-time options which should be set as environment
variables or passed on make’s command-line.

verbose=y Enable debugging messages when Xen detects an unexpected condition.
Also enables console output from all domains.

debug=y Enable debug assertions. Impliesverbose=y. (Primarily useful for tracing
bugs in Xen).

debugger=y Enable the in-Xen debugger. This can be used to debug Xen, guest OSes,
and applications.

79

perfc=y Enable performance counters for significant events within Xen. The counts
can be reset or displayed on Xen’s console via console control keys.

11.3 Xen Boot Options

These options are used to configure Xen’s behaviour at runtime. They should be ap-
pended to Xen’s command line, either manually or by editinggrub.conf .

noreboot Don’t reboot the machine automatically on errors. This is useful to catch
debug output if you aren’t catching console messages via the serial line.

nosmp Disable SMP support. This option is implied by ‘ignorebiostables’.

watchdog Enable NMI watchdog which can report certain failures.

noirqbalance Disable software IRQ balancing and affinity. This can be used on
systems such as Dell 1850/2850 that have workarounds in hardware for IRQ-
routing issues.

badpage=<page number>,<page number>, . . . Specify a list of pages not to be
allocated for use because they contain bad bytes. For example, if your memory
tester says that byte 0x12345678 is bad, you would place ‘badpage=0x12345’
on Xen’s command line.

serial tx buffer=<size> Size of serial transmit buffers. Default is 16kB.

com1=<baud>,DPS,<io base>,<irq > com2=<baud>,DPS,<io base>,<irq >

Xen supports up to two 16550-compatible serial ports. For example: ‘com1=9600,
8n1, 0x408, 5’ maps COM1 to a 9600-baud port, 8 data bits, no parity, 1 stop
bit, I/O port base 0x408, IRQ 5. If some configuration options are standard
(e.g., I/O base and IRQ), then only a prefix of the full configuration string need
be specified. If the baud rate is pre-configured (e.g., by the bootloader) then you
can specify ‘auto’ in place of a numeric baud rate.

console=<specifier list> Specify the destination for Xen console I/O. This is a comma-
separated list of, for example:

vga Use VGA console (until domain 0 boots, unlessvga=...keepis specified).

com1 Use serial port com1.

com2H Use serial port com2. Transmitted chars will have the MSB set. Re-
ceived chars must have MSB set.

com2L Use serial port com2. Transmitted chars will have the MSB cleared.
Received chars must have MSB cleared.

The latter two examples allow a single port to be shared by two subsystems

80

(e.g. console and debugger). Sharing is controlled by MSB of each transmit-
ted/received character. [NB. Default for this option is ‘com1,vga’]

vga=<mode>(,keep) The mode is one of the following options:

ask Display a vga menu allowing manual selection of video mode.

current Use existing vga mode without modification.

text-<mode> Select text-mode resolution, where mode is one of 80x25, 80x28,
80x30, 80x34, 80x43, 80x50, 80x60.

gfx-<mode> Select VESA graphics mode<width>x<height>x<depth> (e.g.,
‘vga=gfx-1024x768x32’).

mode-<mode> Specify a mode number as discovered by ‘vga ask’. Note that
the numbers are displayed in hex and hence must be prefixed by ‘0x’ here
(e.g., ‘vga=mode-0x0335’).

The mode may optionally be followed by ‘,keep’ to cause Xen to keep writing
to the VGA console after domain 0 starts booting (e.g., ‘vga=text-80x50,keep’).

no-real-mode (x86 only) Do not execute real-mode bootstrap code when booting
Xen. This option should not be used except for debugging. It will effectively
disable thevgaoption, which relies on real mode to set the video mode.

edid=no,force (x86 only) Either force retrieval of monitor EDID information via
VESA DDC, or disable it (edid=no). This option should not normally be re-
quired except for debugging purposes.

edd=off,on,skipmbr (x86 only) Control retrieval of Extended Disc Data (EDD) from
the BIOS during boot.

consoleto ring Place guest console output into the hypervisor console ring buffer.
This is disabled by default. When enabled, both hypervisor output and guest
console output is available from the ring buffer. This can be useful forlogging
and/or remote presentation of console data.

sync console Force synchronous console output. This is useful if you system fails
unexpectedly before it has sent all available output to the console. In most cases
Xen will automatically enter synchronous mode when an exceptional event oc-
curs, but this option provides a manual fallback.

conswitch=<switch-char><auto-switch-char> Specify how to switch serial-console
input between Xen and DOM0. The required sequence is CTRL-<switch-char>
pressed three times. Specifying the backtick character disables switching.The
<auto-switch-char> specifies whether Xen should auto-switch input to DOM0
when it boots — if it is ‘x’ then auto-switching is disabled. Any other value, or
omitting the character, enables auto-switching. [NB. Default switch-char is‘a’.]

loglvl=<level> / <level> Specify logging level. Messages of the specified severity
level (and higher) will be printed to the Xen console. Valid levels are ‘none’, ‘er-

81

ror’, ‘warning’, ‘info’, ‘debug’, and ‘all’. The second level specifier is optional:
it is used to specify message severities which are to be rate limited. Default is
‘loglvl=warning’.

guest loglvl=<level> / <level> As for loglvl, but applies to messages relating to
guests. Default is ‘guestloglvl=none/warning’.

consoletimestamps Adds a timestamp prefix to each line of Xen console output.

nmi=xxx Specify what to do with an NMI parity or I/O error.
‘nmi=fatal’: Xen prints a diagnostic and then hangs.
‘nmi=dom0’: Inform DOM0 of the NMI.
‘nmi=ignore’: Ignore the NMI.

mem=xxx Set the physical RAM address limit. Any RAM appearing beyond this
physical address in the memory map will be ignored. This parameter may be
specified with a B, K, M or G suffix, representing bytes, kilobytes, megabytes
and gigabytes respectively. The default unit, if no suffix is specified, iskilobytes.

dom0 mem=<specifier list> Set the amount of memory to be allocated to domain
0. This is a comma-separated list containing the following optional components:

min:<min amt> Minimum amount to allocate to domain 0

max:<min amt> Maximum amount to allocate to domain 0

<amt> Precise amount to allocate to domain 0

Each numeric parameter may be specified with a B, K, M or G suffix, repre-
senting bytes, kilobytes, megabytes and gigabytes respectively; if no suffix is
specified, the parameter defaults to kilobytes. Negative values are subtracted
from total available memory. If<amt> is not specified, it defaults to all avail-
able memory less a small amount (clamped to 128MB) for uses such as DMA
buffers.

dom0 vcpus pin Pins domain 0 VCPUs on their respective physical CPUS (de-
fault=false).

tbuf size=xxx Set the size of the per-cpu trace buffers, in pages (default 0).

sched=xxx Select the CPU scheduler Xen should use. The current possibilities are
‘credit’ (default), and ‘sedf’.

apic verbosity=debug,verbose Print more detailed information about local APIC
and IOAPIC configuration.

lapic Force use of local APIC even when left disabled by uniprocessor BIOS.

nolapic Ignore local APIC in a uniprocessor system, even if enabled by the BIOS.

apic=bigsmp,default,es7000,summitSpecify NUMA platform. This can usually
be probed automatically.

dma bits=xxx Specify width of DMA addresses in bits. This is used in NUMA

82

systems to prevent this special DMA memory from being exhausted in one node
when remote nodes have available memory.

In addition, the following options may be specified on the Xen command line. Since
domain 0 shares responsibility for booting the platform, Xen will automatically propa-
gate these options to its command line. These options are taken from Linux’s command-
line syntax with unchanged semantics.

acpi=off,force,strict,ht,noirq,. . . Modify how Xen (and domain 0) parses the BIOS
ACPI tables.

acpi skip timer override Instruct Xen (and domain 0) to ignore timer-interrupt over-
ride instructions specified by the BIOS ACPI tables.

noapic Instruct Xen (and domain 0) to ignore any IOAPICs that are present in the
system, and instead continue to use the legacy PIC.

11.4 XenLinux Boot Options

In addition to the standard Linux kernel boot options, we support:

xencons=xxx Specify the device node to which the Xen virtual console driver is
attached. The following options are supported:

‘xencons=off’: disable virtual console
‘xencons=tty’: attach console to /dev/tty1 (tty0 at boot-time)
‘xencons=ttyS’: attach console to /dev/ttyS0
‘xencons=xvc’: attach console to /dev/xvc0

The default is ttyS for dom0 and xvc for all other domains.

83

84

Chapter 12

Further Support

If you have questions that are not answered by this manual, the sourcesof informa-
tion listed below may be of interest to you. Note that bug reports, suggestionsand
contributions related to the software (or the documentation) should be sent tothe Xen
developers’ mailing list (address below).

12.1 Other Documentation

For developers interested in porting operating systems to Xen, theXen Interface Man-
ual is distributed in thedocs/ directory of the Xen source distribution.

12.2 Online References

The official Xen web site can be found at:

http://www.xen.org

This contains links to the latest versions of all online documentation, including the
latest version of the FAQ.

Information regarding Xen is also available at the Xen Wiki at

http://wiki.xensource.com/xenwiki/

The Xen project uses Bugzilla as its bug tracking system. You’ll find the XenBugzilla
at http://bugzilla.xensource.com/bugzilla/.

85

12.3 Mailing Lists

There are several mailing lists that are used to discuss Xen related topics. The most
widely relevant are listed below. An official page of mailing lists and subscription
information can be found at

http://lists.xensource.com/

xen-devel@lists.xensource.comUsed for development discussions and bug reports.
Subscribe at:
http://lists.xensource.com/xen-devel

xen-users@lists.xensource.comUsed for installation and usage discussions and re-
quests for help. Subscribe at:
http://lists.xensource.com/xen-users

xen-announce@lists.xensource.comUsed for announcements only. Subscribe at:
http://lists.xensource.com/xen-announce

xen-changelog@lists.xensource.comChangelog feed from the unstable and 3.x trees
- developer oriented. Subscribe at:
http://lists.xensource.com/xen-changelog

86

Appendix A

Unmodified (HVM) guest domains
in Xen with Hardware support for
Virtualization

Xen supports guest domains running unmodified guest operating systems using vir-
tualization extensions available on recent processors. Currently processors featuring
the Intel Virtualization Extension (Intel-VT) or the AMD extension (AMD-V) are sup-
ported. The technology covering both implementations is called HVM (for Hardware
Virtual Machine) in Xen. More information about the virtualization extensionsare
available on the respective websites:http://www.intel.com/technology/computing/vptech

http://www.amd.com/us-en/assets/content type/white papers and tech docs/24593.pdf

A.1 Building Xen with HVM support

The following packages need to be installed in order to build Xen with HVM support.
Some Linux distributions do not provide these packages by default.

87

Package Description
dev86 The dev86 package provides an assembler and linker for real mode

80x86 instructions. You need to have this package installed in order
to build the BIOS code which runs in (virtual) real mode.
If the dev86 package is not available on the x8664 distri-
bution, you can install the i386 version of it. The dev86
rpm package for various distributions can be found at
http://www.rpmfind.net/linux/rpm2html/search.php?qu ery=dev86&submit=Search

SDL-devel, SDL Simple DirectMedia Layer (SDL) is another way of virtualizing the un-
modified guest console. It provides an X window for the guest console.
If the SDL and SDL-devel packages are not installed by
default on the build system, they can be obtained from
http://www.rpmfind.net/linux/rpm2html/search.php?qu ery=SDL&submit=Search

http://www.rpmfind.net/linux/rpm2html/search.php?qu ery=SDL-devel&submit=Search

A.2 Configuration file for unmodified HVM guests

The Xen installation includes a sample configuration file,/etc/xen/xmexample.hvm .
There are comments describing all the options. In addition to the common options that
are the same as those for paravirtualized guest configurations, HVM guest configura-
tions have the following settings:

88

Parameter Description
kernel The HVM firmware loader,/usr/lib/xen/boot/hvmloader

builder The domain build function. The HVM domain uses the ’hvm’ builder.
acpi Enable HVM guest ACPI, default=1 (enabled)
apic Enable HVM guest APIC, default=1 (enabled)
pae Enable HVM guest PAE, default=1 (enabled)
hap Enable hardware-assisted paging support, such as AMD-V’s nested

paging or IntelR©VT’s extended paging. If available, Xen will use
hardware-assisted paging instead of shadow paging for this guest’s
memory management.

vif Optionally defines MAC address and/or bridge for the network inter-
faces. Random MACs are assigned if not given.type=ioemu means
ioemu is used to virtualize the HVM NIC. If no type is specified, vbd is
used, as with paravirtualized guests.

disk Defines the disk devices you want the domain to have access to, and
what you want them accessible as. If using a physical device as the
HVM guest’s disk, each disk entry is of the form
phy:UNAME,ioemu:DEV,MODE,

where UNAME is the host device file, DEV is the device name the do-
main will see, and MODE is r for read-only, w for read-write. ioemu
means the disk will use ioemu to virtualize the HVM disk. If not adding
ioemu, it uses vbd like paravirtualized guests.
If using disk image file, its form should be like
file:FILEPATH,ioemu:DEV,MODE

Optical devices can be emulated by appending cdrom to the device type
’,hdc:cdrom,r’

If using more than one disk, there should be a comma between each disk
entry. For example:
disk = [’file:/var/images/image1.img,ioemu:hda,w’,

’phy:hda1,hdb1,w’, ’file:/var/images/install1.iso,hd c:cdrom,r’]

boot Boot from floppy (a), hard disk (c) or CD-ROM (d). For example, to
boot from CD-ROM and fallback to HD, the entry should be:
boot=’dc’

devicemodel The device emulation tool for HVM guests. This parameter should not
be changed.

sdl Enable SDL library for graphics, default = 0 (disabled)
vnc Enable VNC library for graphics, default = 1 (enabled)
vncconsole Enable spawning of the vncviewer (only valid when vnc=1),default = 0

(disabled)
If vnc=1 and vncconsole=0, user can use vncviewer to manually connect
HVM from remote. For example:
vncviewer domain0 IP address:HVM domain id

serial Enable redirection of HVM serial output to pty device

89

usb Enable USB support without defining a specific USB device. This
option defaults to 0 (disabled) unless the option usbdevice is spec-
ified in which case this option then defaults to 1 (enabled).

usbdevice Enable USB support and also enable support for the givendevice.
Devices that can be specified aremouse (a PS/2 style mouse),
tablet (an absolute pointing device) andhost:id1:id2 (a
physical USB device on the host machine whose ids areid1 and
id2). The advantage oftablet is that Windows guests will au-
tomatically recognize and support this device so specifying the
config line

usbdevice=’tablet’

will create a mouse that works transparently with Windows guests
under VNC. Linux doesn’t recognize the USB tablet yet so Linux
guests under VNC will still need the Summagraphics emulation.
Details about mouse emulation are provided in sectionA.4.3.

localtime Set the real time clock to local time [default=0, that is, set to
UTC].

soundhw Enable sound card support and specify the hardware to emulate.
Values can be sb16, es1370 or all. Default is none.

full-screen Start in full screen.
nographic Another way to redirect serial output. If enabled, no ’sdl’ or ’vnc’

can work. Not recommended.

A.3 Creating virtual disks from scratch

A.3.1 Using physical disks

If you are using a physical disk or physical disk partition, you need to install a Linux
OS on the disk first. Then the boot loader should be installed in the correct place. For
exampledev/sda for booting from the whole disk, or/dev/sda1 for booting from
partition 1.

A.3.2 Using disk image files

You need to create a large empty disk image file first; then, you need to install a Linux
OS onto it. There are two methods you can choose. One is directly installing it using
a HVM guest while booting from the OS installation CD-ROM. The other is copying
an installed OS into it. The boot loader will also need to be installed.

90

To create the image file:

The image size should be big enough to accommodate the entire OS. This example
assumes the size is 1G (which is probably too small for most OSes).

dd if=/dev/zero of=hd.img bs=1M count=0 seek=1024

To directly install Linux OS into an image file using a HVM guest:

Install Xen and create HVM with the original image file with booting from CD-ROM.
Then it is just like a normal Linux OS installation. The HVM configuration file should
have a stanza for the CD-ROM as well as a boot device specification:

disk=[’file:/var/images/your-hd.img,hda,w’, ’,hdc:cd rom,r’] boot=’d’

If this method does not succeed, you can choose the following method of copying an
installed Linux OS into an image file.

To copy a installed OS into an image file:

Directly installing is an easier way to make partitions and install an OS in a disk image
file. But if you want to create a specific OS in your disk image, then you will most
likely want to use this method.

1. Install a normal Linux OS on the host machine
You can choose any way to install Linux, such as using yum to install Red Hat
Linux or YAST to install Novell SuSE Linux. The rest of this example assumes
the Linux OS is installed in/var/guestos/ .

2. Make the partition table
The image file will be treated as hard disk, so you should make the partition
table in the image file. For example:

losetup /dev/loop0 hd.img

fdisk -b 512 -C 4096 -H 16 -S 32 /dev/loop0

press ’n’ to add new partition

press ’p’ to choose primary partition

press ’1’ to set partition number

press "Enter" keys to choose default value of "First Cylinde r" parameter.

press "Enter" keys to choose default value of "Last Cylinder " parameter.

press ’w’ to write partition table and exit

losetup -d /dev/loop0

3. Make the file system and install grub
ln -s /dev/loop0 /dev/loop

losetup /dev/loop0 hd.img

losetup -o 16384 /dev/loop1 hd.img

91

mkfs.ext3 /dev/loop1

mount /dev/loop1 /mnt

mkdir -p /mnt/boot/grub

cp /boot/grub/stage * /boot/grub/e2fs stage1 5 /mnt/boot/grub

umount /mnt

grub

grub> device (hd0) /dev/loop

grub> root (hd0,0)

grub> setup (hd0)

grub> quit

rm /dev/loop

losetup -d /dev/loop0

losetup -d /dev/loop1

The losetup option -o 16384 skips the partition table in the image file. It
is the number of sectors times 512. We need/dev/loop because grub is ex-
pecting a disk devicename, wherenamerepresents the entire disk andname1
represents the first partition.

4. Copy the OS files to the image
If you have Xen installed, you can easily uselomount instead oflosetup and
mount when coping files to some partitions.lomount just needs the partition
information.

lomount -t ext3 -diskimage hd.img -partition 1 /mnt/guest

cp -ax /var/guestos/ {root,dev,var,etc,usr,bin,sbin,lib } /mnt/guest

mkdir /mnt/guest/ {proc,sys,home,tmp }

5. Edit the /etc/fstab of the guest image
The fstab should look like this:

vim /mnt/guest/etc/fstab

/dev/hda1 / ext3 defaults 1 1

none /dev/pts devpts gid=5,mode=620 0 0

none /dev/shm tmpfs defaults 0 0

none /proc proc defaults 0 0

none /sys sysfs efaults 0 0

6. umount the image file
umount /mnt/guest

Now, the guest OS imagehd.img is ready. You can also referencehttp://free.oszoo.org

for quickstart images. But make sure to install the boot loader.

92

A.4 HVM Guests

A.4.1 Editing the Xen HVM config file

Make a copy of the example HVM configuration file/etc/xen/xmexample.hvm

and edit the line that reads

disk = [’file:/var/images/ min-el3-i386.img,hda,w’]

replacingmin-el3-i386.imgwith the name of the guest OS image file you just made.

A.4.2 Creating HVM guests

Simply follow the usual method of creating the guest, providing the filename of your
HVM configuration file:

xend start

xm create /etc/xen/hvmguest.hvm

In the default configuration, VNC is on and SDL is off. Therefore VNC windows will
open when HVM guests are created. If you want to use SDL to create HVMguests, set
sdl=1 in your HVM configuration file. You can also turn off VNC by settingvnc=0 .

A.4.3 Mouse issues, especially under VNC

Mouse handling when using VNC is a little problematic. The problem is that the VNC
viewer provides a virtual pointer which is located at an absolute location in theVNC
window and only absolute coordinates are provided. The HVM device model converts
these absolute mouse coordinates into the relative motion deltas that are expected by
the PS/2 mouse driver running in the guest. Unfortunately, it is impossible to keep
these generated mouse deltas accurate enough for the guest cursor to exactly match
the VNC pointer. This can lead to situations where the guest’s cursor is in the center
of the screen and there’s no way to move that cursor to the left (it can happen that the
VNC pointer is at the left edge of the screen and, therefore, there are no longer any left
mouse deltas that can be provided by the device model emulation code.)

To deal with these mouse issues there are 4 different mouse emulations available from
the HVM device model:

PS/2 mouse over the PS/2 port.This is the default mouse that works perfectly well
under SDL. Under VNC the guest cursor will get out of sync with the VNC
pointer. When this happens you can re-synchronize the guest cursorto the VNC
pointer by holding down theleft-ctl andleft-alt keys together. While these keys
are down VNC pointer motions will not be reported to the guest so that the

93

VNC pointer can be moved to a place where it is possible to move the guest
cursor again.

Summagraphics mouse over the serial port.The device model also provides emu-
lation for a Summagraphics tablet, an absolute pointer device. This emulation
is provided over the second serial port,/dev/ttyS1 for Linux guests andCOM2
for Windows guests. Unfortunately, neither Linux nor Windows providesde-
fault support for the Summagraphics tablet so the guest will have to be manually
configured for this mouse.

Linux configuration.

First, configure the GPM service to use the Summagraphics tablet. This can vary
between distributions but, typically, all that needs to be done is modify the file
/etc/sysconfig/mouse to contain the lines:

MOUSETYPE="summa"

XMOUSETYPE="SUMMA"

DEVICE=/dev/ttyS1

and then restart the GPM daemon.

Next, modify the X11 config/etc/X11/xorg.conf to support the Summ-
graphics tablet by replacing the input device stanza with the following:

Section "InputDevice"

Identifier "Mouse0"

Driver "summa"

Option "Device" "/dev/ttyS1"

Option "InputFashion" "Tablet"

Option "Mode" "Absolute"

Option "Name" "EasyPen"

Option "Compatible" "True"

Option "Protocol" "Auto"

Option "SendCoreEvents" "on"

Option "Vendor" "GENIUS"

EndSection

Restart X and the X cursor should now properly track the VNC pointer.

Windows configuration.

Get the filehttp://www.cad-plan.de/files/download/tw2k.exe and
execute that file on the guest, answering the questions as follows:

1. When the program asks formodel, scroll down and selectSummaSketch
(MM Compatible) .

2. When the program asks forCOM Port specifycom2.

3. When the programs asks for aCursor Type specify4 button cursor/puck.

94

4. The guest system will then reboot and, when it comes back up, the guest
cursor will now properly track the VNC pointer.

PS/2 mouse over USB port.This is just the same PS/2 emulation except it is pro-
vided over a USB port. This emulation is enabled by the configuration flag:

usbdevice=’mouse’

USB tablet over USB port. The USB tablet is an absolute pointing device that has
the advantage that it is automatically supported under Windows guests, although
Linux guests still require some manual configuration. This mouse emulation is
enabled by the configuration flag:

usbdevice=’tablet’

Linux configuration.

Unfortunately, there is no GPM support for the USB tablet at this point in time.
If you intend to use a GPM pointing device under VNC you should configure
the guest for Summagraphics emulation.

Support for X11 is available by following the instructions at
http://stz-softwaretechnik.com/˜ke/touchscreen/evto uch.html

with one minor change. Thexorg.conf given in those instructions uses the
wrong values for the X & Y minimums and maximums, use the following con-
fig stanza instead:

Section "InputDevice"

Identifier "Tablet"

Driver "evtouch"

Option "Device" "/dev/input/event2"

Option "DeviceName" "touchscreen"

Option "MinX" "0"

Option "MinY" "0"

Option "MaxX" "32256"

Option "MaxY" "32256"

Option "ReportingMode" "Raw"

Option "Emulate3Buttons"

Option "Emulate3Timeout" "50"

Option "SendCoreEvents" "On"

EndSection

Windows configuration.

Just enabling the USB tablet in the guest’s configuration file is sufficient, Win-
dows will automatically recognize and configure device drivers for this pointing
device.

95

A.4.4 USB Support

There is support for an emulated USB mouse, an emulated USB tablet and physical
low speed USB devices (support for high speed USB 2.0 devices is still under devel-
opment).

USB PS/2 style mouse.Details on the USB mouse emulation are given in sections
A.2 andA.4.3. Enabling USB PS/2 style mouse emulation is just a matter of
adding the line

usbdevice=’mouse’

to the configuration file.

USB tablet. Details on the USB tablet emulation are given in sectionsA.2 andA.4.3.
Enabling USB tablet emulation is just a matter of adding the line

usbdevice=’tablet’

to the configuration file.

USB physical devices.Access to a physical (low speed) USB device is enabled by
adding a line of the form

usbdevice=’host:vid:pid’

into the the configuration file.1 vid andpid are a product id and vendor id that
uniquely identify the USB device. These ids can be identified in two ways:

1. Through the control window. As described in sectionA.4.6 the control
window is activated by pressingctl-alt-2 in the guest VGA window. As
long as USB support is enabled in the guest by including the config file
line

usb=1

then executing the command

info usbhost

in the control window will display a list of all usb devices and their ids.
For example, this output:

Device 1.3, speed 1.5 Mb/s

Class 00: USB device 04b3:310b

was created from a USB mouse with vendor id04b3and product id310b.
This device could be made available to the HVM guest by including the
config file entry

usbdevice=’host:04be:310b’

1There is an alternate way of specifying a USB device that uses the syntaxhost:bus.addr but this
syntax suffers from a major problem that makes it effectively useless. The problem is that theaddr
portion of this address changes every time the USB device is plugged into thesystem. For this reason
this addressing scheme is not recommended and will not be documentedfurther.

96

It is also possible to enable access to a USB device dynamically through
the control window. The control window command

usb_add host:vid:pid

will also allow access to a USB device with vendor idvid and product id
pid.

2. Through the/proc file system. The contents of the pseudo file/proc/bus/usb/devices

can also be used to identify vendor and product ids. Looking at this file,
the line starting withP: has a fieldVendor giving the vendor id and another
fieldProdID giving the product id. The contents of/proc/bus/usb/devices

for the example mouse is as follows:

T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 3 Spd=1.5 MxCh = 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1

P: Vendor=04b3 ProdID=310b Rev= 1.60

C: * #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA

I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=(n one)

E: Ad=81(I) Atr=03(Int.) MxPS= 4 Ivl=10ms

Note that theP: line correctly identifies the vendor id and product id for
this mouse as04b3:310b.

There is one other issue to be aware of when accessing a physical USB device
from the guest. The Dom0 kernel must not have a device driver loaded for the
device that the guest wishes to access. This means that the Dom0 kernel must
not have that device driver compiled into the kernel or, if using modules, that
driver module must not be loaded. Note that this is the device specific USB
driver that must not be loaded, either theUHCI or OHCI USB controller driver
must still be loaded.

Going back to the USB mouse as an example, iflsmodgives the output:

Module Size Used by

usbmouse 4128 0

usbhid 28996 0

uhci_hcd 35409 0

then the USB mouse is being used by the Dom0 kernel and is not available to
the guest. Executing the commandrmmod usbhid2 will remove the USB mouse
driver from the Dom0 kernel and the mouse will now be accessible by the HVM
guest.

Be aware the the Linux USB hotplug system will reload the drivers if a USB
device is removed and plugged back in. This means that just unloading the
driver module might not be sufficient if the USB device is removed and added
back. A more reliable technique is to firstrmmod the driver and then rename

2Turns out theusbhid driver is the significant one for the USB mouse, the presence or absence of the
moduleusbmousehas no effect on whether or not the guest can see a USB mouse.

97

the driver file in the/lib/modules directory, just to make sure it doesn’t get
reloaded.

A.4.5 Destroy HVM guests

HVM guests can be destroyed in the same way as can paravirtualized guests. We
recommend that you shut-down the guest using the guest OS’ provided method, for
Linux, type the command

poweroff

in the HVM guest’s console, for Windows use Start -¿ Shutdown first to prevent data
loss. Depending on the configuration the guest will be automatically destroyed, other-
wise execute the command

xm destroy vmx guest id

at the Domain0 console.

A.4.6 HVM window (X or VNC) Hot Key

If you are running in the X environment after creating a HVM guest, an X window is
created. There are several hot keys for control of the HVM guest that can be used in
the window.

Ctrl+Alt+2 switches from guest VGA window to the control window. Typinghelp

shows the control commands help. For example, ’q’ is the command to destroy the
HVM guest.
Ctrl+Alt+1 switches back to HVM guest’s VGA.
Ctrl+Alt+3 switches to serial port output. It captures serial output from the HVM
guest. It works only if the HVM guest was configured to use the serial port.

98

Appendix B

Vnets - Domain Virtual
Networking

Xen optionally supports virtual networking for domains usingvnets. These emulate
private LANs that domains can use. Domains on the same vnet can be hostedon the
same machine or on separate machines, and the vnets remain connected if domains
are migrated. Ethernet traffic on a vnet is tunneled inside IP packets on thephysical
network. A vnet is a virtual network and addressing within it need have norelation to
addressing on the underlying physical network. Separate vnets, or vnets and the phys-
ical network, can be connected using domains with more than one network interface
and enabling IP forwarding or bridging in the usual way.

Vnet support is included inxmand xend:

xm vnet-create <config>

creates a vnet using the configuration in the file<config> . When a vnet is created
its configuration is stored by xend and the vnet persists until it is deleted using

xm vnet-delete <vnetid>

The vnets xend knows about are listed by

xm vnet-list

More vnet management commands are available using thevn tool included in the vnet
distribution.

The format of a vnet configuration file is

(vnet (id <vnetid>)

(bridge <bridge>)

(vnetif <vnet interface>)

(security <level>))

White space is not significant. The parameters are:

99

• <vnetid> : vnet id, the 128-bit vnet identifier. This can be given as 8 4-digit
hex numbers separated by colons, or in short form as a single 4-digit hex number.
The short form is the same as the long form with the first 7 fields zero. Vnetids
must be non-zero and id 1 is reserved.

• <bridge> : the name of a bridge interface to create for the vnet. Domains are
connected to the vnet by connecting their virtual interfaces to the bridge. Bridge
names are limited to 14 characters by the kernel.

• <vnetif> : the name of the virtual interface onto the vnet (optional). The in-
terface encapsulates and decapsulates vnet traffic for the network and is attached
to the vnet bridge. Interface names are limited to 14 characters by the kernel.

• <level> : security level for the vnet (optional). The level may be one of

– none : no security (default). Vnet traffic is in clear on the network.

– auth : authentication. Vnet traffic is authenticated using IPSEC ESP with
hmac96.

– conf : confidentiality. Vnet traffic is authenticated and encrypted using
IPSEC ESP with hmac96 and AES-128.

Authentication and confidentiality are experimental and use hard-wired keys at
present.

When a vnet is created its configuration is stored by xend and the vnet persists until
it is deleted usingxm vnet-delete <vnetid> . The interfaces and bridges used
by vnets are visible in the output ofifconfig andbrctl show .

B.1 Example

If the file vnet97.sxp contains

(vnet (id 97) (bridge vnet97) (vnetif vnif97)

(security none))

Thenxm vnet-create vnet97.sxp will define a vnet with id 97 and no secu-
rity. The bridge for the vnet is called vnet97 and the virtual interface for itis vnif97.
To add an interface on a domain to this vnet set its bridge to vnet97 in its configuration.
In Python:

vif="bridge=vnet97"

In sxp:

(dev (vif (mac aa:00:00:01:02:03) (bridge vnet97)))

Once the domain is started you should see its interface in the output ofbrctl show

under the ports forvnet97 .

100

To get best performance it is a good idea to reduce the MTU of a domain’s interface
onto a vnet to 1400. For example usingifconfig eth0 mtu 1400 or putting
MTU=1400 in ifcfg-eth0 . You may also have to change or remove cached config
files for eth0 under/etc/sysconfig/networking . Vnets work anyway, but
performance can be reduced by IP fragmentation caused by the vnet encapsulation
exceeding the hardware MTU.

B.2 Installing vnet support

Vnets are implemented using a kernel module, which needs to be loaded before they
can be used. You can either do this manually before starting xend, using thecom-
mandvn insmod , or configure xend to use thenetwork-vnet script in the xend
configuration file/etc/xend/xend-config.sxp :

(network-script network-vnet)

This script insmods the module and calls thenetwork-bridge script.

The vnet code is not compiled and installed by default. To compile the code and
install on the current system usemake install in the root of the vnet source tree,
tools/vnet . It is also possible to install to an installation directory usingmake

dist . See theMakefile in the source for details.

The vnet module creates vnet interfacesvnif0002 , vnif0003 andvnif0004 by
default. You can test that vnets are working by configuring IP addresses on these
interfaces and trying to ping them across the network. For example, using machines
hostA and hostB:

hostA# ifconfig vnif0004 192.0.2.100 up

hostB# ifconfig vnif0004 192.0.2.101 up

hostB# ping 192.0.2.100

The vnet implementation uses IP multicast to discover vnet interfaces, so all machines
hosting vnets must be reachable by multicast. Network switches are often configured
not to forward multicast packets, so this often means that all machines using avnet
must be on the same LAN segment, unless you configure vnet forwarding.

You can test multicast coverage by pinging the vnet multicast address:

ping -b 224.10.0.1

You should see replies from all machines with the vnet module running. You can see
if vnet packets are being sent or received by dumping traffic on the vnet UDP port:

tcpdump udp port 1798

If multicast is not being forwarded between machines you can configure multicast
forwarding using vn. Suppose we have machines hostA on 192.0.2.200 and hostB on

101

192.0.2.211 and that multicast is not forwarded between them. We use vn to configure
each machine to forward to the other:

hostA# vn peer-add hostB

hostB# vn peer-add hostA

Multicast forwarding needs to be used carefully - you must avoid creatingforwarding
loops. Typically only one machine on a subnet needs to be configured to forward, as it
will forward multicasts received from other machines on the subnet.

102

Appendix C

Glossary of Terms

Domain A domain is the execution context that contains a runningvirtual machine.
The relationship between virtual machines and domains on Xen is similar to
that between programs and processes in an operating system: a virtual machine
is a persistent entity that resides on disk (somewhat like a program). When itis
loaded for execution, it runs in a domain. Each domain has adomain ID.

Domain 0 The first domain to be started on a Xen machine. Domain 0 is responsible
for managing the system.

Domain ID A unique identifier for adomain, analogous to a process ID in an operat-
ing system.

Full virtualization An approach to virtualization which requires no modifications to
the hosted operating system, providing the illusion of a complete system of real
hardware devices.

Hypervisor An alternative term forVMM , used because it means ‘beyond supervi-
sor’, since it is responsible for managing multiple ‘supervisor’ kernels.

Live migration A technique for moving a running virtual machine to another physical
host, without stopping it or the services running on it.

Paravirtualization An approach to virtualization which requires modifications to the
operating system in order to run in a virtual machine. Xen uses paravirtualiza-
tion but preserves binary compatibility for user space applications.

Shadow pagetablesA technique for hiding the layout of machine memory from a
virtual machine’s operating system. Used in someVMMs to provide the illusion
of contiguous physical memory, in Xen this is used duringlive migration .

Virtual Block Device Persistent storage available to a virtual machine, providing the
abstraction of an actual block storage device.VBDs may be actual block de-
vices, filesystem images, or remote/network storage.

Virtual Machine The environment in which a hosted operating system runs, provid-

103

ing the abstraction of a dedicated machine. A virtual machine may be identical
to the underlying hardware (as infull virtualization , or it may differ, as inpar-
avirtualization).

VMM Virtual Machine Monitor - the software that allows multiple virtual machines
to be multiplexed on a single physical machine.

Xen Xen is a paravirtualizing virtual machine monitor, developed primarily by the
Systems Research Group at the University of Cambridge Computer Laboratory.

XenLinux A name for the port of the Linux kernel that runs on Xen.

104

