
Lars Kurth
Community Manager, Xen Project

Chairman, Xen Project Advisory Board

Director, Open Source Business Office, Citrix lars_kurth

Culture, Roles,
Community

Goals

Good Planning
& Preparation

Following
workflow and
conventions

Systematic
approach

Good
Communicati

on

Unnecessary

iterations,

misunderstandings

and wasted time of

contributor and

reviewers time

Wrong expectations

leading to frustration and

conflict

Goal: Effective Contributions

Factors that impact Effectiveness

Motivators of Community Stakeholders

Common factors for disagreement when trying to contribute

The case for Code Reviews: Find bugs early & often

Factors impacting Review Duration

Jumbled Reviews and Phasing

Code Reviews: Theory

Relevant Conventions and Processes in the Xen Project

Systematic approach to acting on Feedback

Communication is key : Avoid Misunderstandings

Enable you to Work Efficiently
with the Xen Project Developer
Community

Vinovyn @ Flickr

Which factors impact the
length of time it takes your
patch to be up-streamed?

• Get your code into the code line

• Get it in as quickly as possible, with as little re-work as possible

• Or at least, make the process of contributing predictable

• You may be under pressure from a (product) manager

Enabling feature or API which you

want to be widely used

Feature or API, that you are using in

your product or service. In other

words you don’t care much if

someone else uses it

Research purpose

Up to 1 week 1 to 2 weeks 2 to 3 weeks 3 to 6 weeks 6 to 13 weeks More than 13
weeks

43%

15%

10%

13%
11%

8%

As a contributor, most of the time

you want to get your code

reviewed and accepted as quickly

as possible, with as few modifications as

possible

Reviewers, Maintainers, Committers, Project Lead

• System Properties: Code readability, understanding what goes in,
maintainability, quality, performance, scalability, …

• Practical Issues:

– Is this patch one I have to look at?

– Reviewer / maintainer of the patch series

– Archaeologist: years down the line – why is the code as it is?

• Workload and personal:

– Wants to avoid un-necessary workload

– Day-job: aka other commitments

– Has a personal communication style

– Reputation within the community

30% Community Growth p.a.

Contributors competing for review

time from stretched maintainer /

reviewer base

Average review time up from 28 to

32 days in 6 months

Problem

Up to 1 week 1 to 2 weeks 2 to 3 weeks 3 to 6 weeks 6 to 13 weeks More than 13
weeks

43%

15%

10%

13%
11%

8%

Gatekeepers ideally want code to

go in quickly

BUT: they also have many other

factors to consider

GatekeeperContributor

Different mindset

Different expectations

Bad communication

Misunderstandings

Usually common interest

Process, convention & tools

Awareness, Mindset / Empathy, Planning,

Good Communication, Trust / Respect, etc.

The tension identified is not
specific to OSS development, but
is a property of Code Review

Aka the tension between
submitter and gatekeeper
(reviewer)

Vinovyn @ Flickr

Culture, Roles,
Community

Goals

Good Planning
& Preparation

Following
workflow and
conventions

Systematic
approach

Good
Communicati

on

The case for Peer Code Review
Find Bugs Early and Often

One of our customers set out to test exactly how much
money the company would have saved had they used
peer review in a certain three-month, 10,000-line
project with 10 developers. They tracked how many
bugs were found by QA and customers in the
subsequent six months. Then they went back and had
another group of developers peer-review the code in
question.

Using metrics from previous releases of this project
they knew the average cost of fixing a defect at each
phase of development, so they were able to measure
directly how much money they would have saved.

http://smartbear.com/smartbear/media/pdfs/
best-kept-secrets-of-peer-code-review.pdf

snoopsmouse @ Flickr

• Projects don’t normally have a QA team
 Bugs discovered later  even more expensive to fix

• Customer (user) discovered bugs are usually found in derivatives
 time-lag and thus cost to fix is even more expensive

• Bugs in FOSS projects are often not fixed

• Bugs and bad quality can damage the reputation of a project

• And by extension they can damage the business interests and
reputation of contributors to that project (including your own)

• Asking maintainers to take your patch in without good review =
Asking others to fix bugs and carry significant cost for you in future

Culture, Roles,
Community

Goals

Good Planning
& Preparation

Following
workflow and
conventions

Systematic
approach

Good
Communicati

on

• Type of feature

– Useful to many stake-holders or just to a single vendor?

– Is the use-case explained or understood?

– Do reviewers have all the information they need to be able to review?

• Complexity and Modularity

– How many files and lines per patch?

– How many components (hypervisor, qemu, toolstack, APIs, …)?

– Does the structure of the patch/patch series help a review?

– Do you need a design?

• Readability

– Is it easy to infer the design from the patch?

– Do you follow Coding standards?

– Are complex code snippets explained within comments in the patch?

of

Iterations

Each question

may require a

re-submit

• Code Quality

• Test failures, Coverity Scan, …

– Will Coverity Scan throw up issues?

– Do you need new Test Cases?

– Should you include tests upfront?

• Time and Experience

– Delays may require rebasing the patch!

– How responsive are you to reviewer comments?

– How responsive is the reviewer? He/she may have a queue of requests!

– Use past submission experience to estimate # of iterations

– Your standing in the community (your track record)

• Other factors

– Some patches may require documentation (e.g. API docs)

of

Iterations

Mission Creep
(e.g. additional requirements to

minimize risk)

Elapsed time per

iteration adding up

Reviewer takes pity on contributor

Gives some feedback (e.g. coding style, …)

May ask some questions about the use-case

and/or the design

Later it becomes clear that

there is an issue with the use-case,

design, architecture or assumptions

Significant re-work

Extra effort for contributor and reviewer

At this stage both may be somewhat annoyed
(and we will get communication issues)

…

Why do “jumbled” reviews
happen?

• Missing Information

• Wrongly set expectations due to misunderstandings

• The reviewer giving too detailed information before agreeing that he is
happy with the use-case, architecture, design – and thus setting wrong
expectations

• Another reviewer getting involved later down the road

– There is also then potential for disagreement

Rationale
(more if controversial)

Use Case

Context
(Additional Information)

Design
(if complex)

Assumptions
(that you made)

Code &

Code Review

Systematic

approach to

acting on

Feedback

Dealing

with test

issues

• The Xen Project does not have a design requirement, but …

– Designs are welcome, when it makes sense

– When unsure, whether a design helps, ask: Outline the use-case, problem and approach you are planning to take.

– Design discussions labeled “Design” + some version number + some text

• Requests For Comments (RFCs)

– For use-cases, prototypes, proof of concepts, etc.

– Ask reviewers specific questions about, use-case, architecture, design, etc. & look at specific issues you want feedback on

• Timing

– Design or related questions best at beginning of release cycle

– Make sure you understand and engage with the Release and Roadmap Process

• Communication

– Prompt reviewers: Do you agree with Y (e.g. the design), given X (e.g. that I got some detailed feedback on the code, but also
some design related questions)?

– The community is open to meetings in some cases (e.g. IRC meetings, calls, etc.) : high velocity communication can be more
effective than mail.

• BUT: it only works, if the key stake-holders agree to attend.

• AND: document agreements / disagreements / open questions post the meeting by posting a summary to the list, such that there is a
record

{MORE

LATER}

Interesting Facts about
Code Reviews

In May of 2006 Cisco Systems performed a 10 month study
of code reviews encompassing 2500 reviews of 3.2 million
lines of code written by 50 developers.

This is the largest case study ever done on what’s known as
a “lightweight” code review process.

• Reviewers become ineffective when reviewing code for more than an
hour at a time  Thus, a patch should be reviewable in < 1 hour

• Reviewers are most effective at reviewing small amounts of code.

– Anything below 200 lines produces a high rate of defects, several times the
average  Thus, a patch should ideally be < 200 LOC and not larger than 400

– After that the results trail off considerably; no review larger than 250 lines
produced more than 37 defects per 1000 lines of code

• Reviews with author preparation (annotations explaining changes)
have significantly smaller defect densities compared to reviews without
 Incidentally that helps the reviewer also

• The “Ego Effect”: Developers whose code is being reviewed
immediately develop code with fewer defects in them

• Systematic Personal Growth: Developers who systematically address
issues raised and make notes of classes of issues found, learn from
their mistakes and from feedback and become better developers
through self-awareness

• Hurt Feelings: Taking criticism (in particular in public) isn’t easy. The
point of code review is to find issues. Hurt feelings are in most cases,
the consequence of miscommunication and/or misunderstandings and
not intentional  Which is why we will look at communication
techniques later

Culture, Roles,
Community

Goals

Good Planning
& Preparation

Following
workflow and
conventions

Systematic
approach

Good
Communicati

on

Preparation:

Contributor gathers changes

Contributor sends patch or patch

series with meta-information (use

case, rationale, design background,

refs, …) to the mailing list

Inspection / Review:

Reviewer(s) examines code diffs following their

own schedule and time constraints

Debate until resolved (Maintainer ACK)

Contributor keeps the process going

(“Next revision”, “Are we done yet?”)

Rework:

Contributor responds to issues by making

changes and sends new patch

Acked-by:

<Maintainer>

Release Manager

can object

Staging:

Committer checks changes into staging branch

Test suite passes / fails; Coverity Scan issues

Review

Feedback

Reviewed-by

Tested-by

…

Test or

scan fail

Complete: Change moved into master branch

No issue

From Xen Project Governance

• Principles: Openness, Transparency, Meritocracy

• Roles: Maintainers, Committers, Project Lead

• Conflict Resolution : Refereeing

• Contribution Guidelines: Developer Certificate of Origin

• Security Vulnerability Policy (relevant for Coverity Scan)

Documented and regularly used undocumented conventions
(however changes to these are made only in line with governance)

• Patch contribution workflow

• Sign off (Acked-by, reviewed-by, etc.)

• Coding style

• Release Manager Role and Release Process (aka different stages)

• Access to Coverity Scan

• Staging-to-master pushgate and automated testing

• Personal repos hosted by Xen Project

• Design reviews (informal)

• Hackathons, Developer meetings, Ad-hoc meetings to resolve issues (informal)

Culture, Roles,
Community

Goals

Good Planning
& Preparation

Following
workflow and
conventions

Systematic
approach

Good
Communicati

on

• Feedback comes in hierarchical threads

• Not always from one person

• Feedback is not received in a linear list over time

• Needs to fit your working style and personal preference

– Otherwise you will get tired of it and won’t use it

• Usually, it comes down to having one master list of issues somewhere

– Otherwise you will “loose” or not act on bits of feedback

How do you keep track of
feedback from an email based
code review?

Thomas Galvez @ Flickr

Culture, Roles,
Community

Goals

Good Planning
& Preparation

Following
workflow and
conventions

Systematic
approach

Good
Communicati

on

You have 30 seconds to write
down terms you associate
with “scalability”

Thomas Galvez @ Flickr

Blinking Words are words or phrases that take on many possible
interpretations, and where definitions blink between different meanings
depending upon who hears it.

Note that the reason for the exercise is to show, how people with similar
background can interpret terminology that is commonly used in their field
very differently.

Adversarial Style: Two ideas enter, one idea leaves

Collaborative Style: Participants build off of each others’ ideas, working
together to create something new

• Education systems across the world have often a bias towards adversarial

communication

• The goal for code reviews (and patch reviews) is inherently collaborative

• BUT: often become Adversarial

Or Techniques to Debug a Conversation

• High Quality Explanation

• High Quality Inquiry

• The Left Hand Column (what was said and what you were thinking)

• The Ladder (a cognitive process on how humans draw conclusions)

More Later

Culture, Roles,
Community

Goals

Good Planning
& Preparation

Following
workflow and
conventions

Systematic
approach

Good
Communicati

on

Awareness

of Culture

and others’

Perspective

Good

Planning

and

Preparation

Following

the Process

and

Conventions

Systematic

approach to

acting on

Feedback

Good

Communicatio

n

More Later

Part 2: Xen Project Processes, Conventions and Governance

Part 3: Communication – or avoiding misunderstandings

