Archived/Xen Development Projects: Difference between revisions
No edit summary |
Lars.kurth (talk | contribs) No edit summary |
||
(76 intermediate revisions by 18 users not shown) | |||
Line 1: | Line 1: | ||
__TOC__ |
|||
__NOTOC__ |
|||
{{sidebar |
|||
| name = Content |
|||
| outertitlestyle = text-align: left; |
|||
| headingstyle = text-align: left; |
|||
| contentstyle = text-align: left; |
|||
| content1 = __TOC__ |
|||
}} |
|||
This page lists various Xen related development projects that can be picked up by anyone! If you're interesting in hacking Xen this is the place to start! Ready for the challenge? |
This page lists various Xen related development projects that can be picked up by anyone! If you're interesting in hacking Xen this is the place to start! Ready for the challenge? |
||
Line 28: | Line 20: | ||
== List of projects == |
== List of projects == |
||
=== Domain support === |
=== Domain support === |
||
{{project |
|||
|Project=Upstreaming Xen PVSCSI drivers to mainline Linux kernel |
|||
|Date=01/08/2012 |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|||
PVSCSI drivers needs to be upstreamed yet. Necessary operations may include: |
|||
* Task 1: Upstream PVSCSI scsifront frontend driver (for domU). |
|||
* Task 2: Upstream PVSCSI scsiback backend driver (for dom0). |
|||
* Send to various related upstream mailinglists for review, comments. |
|||
* Fix any upcoming issues. |
|||
* Repeat until merged to upstream Linux kernel git tree. |
|||
* http://git.kernel.org/?p=linux/kernel/git/konrad/xen.git;a=shortlog;h=refs/heads/devel/xen-scsi.v1.0 |
|||
* More info: http://wiki.xen.org/xenwiki/XenPVSCSI |
|||
}} |
|||
{{project |
{{project |
||
|Project= |
|Project=Utilize Intel QuickPath on network and block path. |
||
|Date=01/ |
|Date=01/22/2013 |
||
|Difficulty=High |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
||
|Desc=The Intel QuickPath, also known as Direct Cache Access, is the chipset that sits in the PCIe subsystem in the Intel systems. It allows the PCIe subsystem to tag which PCIe writes to memory should reside in the Last Level Cache (LLC, also known as L3, which in some cases can be of 15MB or 2.5MB per CPU). This offers incredible boosts of speed - as we bypass the DIMMs and instead the CPU can process the data in the cache. |
|||
|Desc= |
|||
PVUSB drivers needs to be upstreamed yet. Necessary operations may include: |
|||
* Upstream PVUSB usbfront frontend driver (for domU). |
|||
* Upstream PVUSB usbback backend driver (for dom0). |
|||
* Send to various related upstream mailinglists for review, comments. |
|||
* Fix any upcoming issues. |
|||
* Repeat until merged to upstream Linux kernel git tree. |
|||
* http://git.kernel.org/?p=linux/kernel/git/konrad/xen.git;a=shortlog;h=refs/heads/devel/xen-usb.v1.1 |
|||
* More info: http://wiki.xen.org/xenwiki/XenUSBPassthrough |
|||
}} |
|||
Adding this component in the network or block backends can mean that we can keep the data longer in the cache and the guest can process the data right off the cache. |
|||
{{project |
|||
|Project=Implement Xen PVSCSI support in xl/libxl toolstack |
|||
|Date=01/12/2012 |
|||
|Contact=Pasi Karkkainen <pasik@iki.fi> |
|||
|Desc= |
|||
xl/libxl does not currently support Xen PVSCSI functionality. Port the feature from xm/xend to xl/libxl. Necessary operations include: |
|||
* Task 1: Implement PVSCSI in xl/libxl, make it functionally equivalent to xm/xend. |
|||
* Send to xen-devel mailinglist for review, comments. |
|||
* Fix any upcoming issues. |
|||
* Repeat until merged to xen-unstable. |
|||
* See above for PVSCSI drivers for dom0/domU. |
|||
* Xen PVSCSI supports both PV domUs and HVM guests with PV drivers. |
|||
* More info: http://wiki.xen.org/xenwiki/XenPVSCSI |
|||
}} |
|||
|Skills=The basic requirement for this project is Linux kernel programming skill. |
|||
{{project |
|||
The candidate for this project should be familiar with open source development workflow as it may require collaboration with several parties. |
|||
|Project=Implement Xen PVUSB support in xl/libxl toolstack |
|||
|Date=01/12/2012 |
|||
|Outcomes=Expected outcome: |
|||
|Contact=Pasi Karkkainen <pasik@iki.fi> |
|||
* Have upstream patches. |
|||
|Desc= |
|||
* benchmark report of with and without. |
|||
xl/libxl does not currently support Xen PVUSB functionality. Port the feature from xm/xend to xl/libxl. Necessary operations include: |
|||
|GSoC=Yes |
|||
* Task 1: Implement PVUSB in xl/libxl, make it functionally equivalent to xm/xend. |
|||
* Send to xen-devel mailinglist for review, comments. |
|||
* Fix any upcoming issues. |
|||
* Repeat until merged to xen-unstable. |
|||
* See above for PVUSB drivers for dom0/domU. |
|||
* Xen PVUSB supports both PV domUs and HVM guests with PV drivers. |
|||
* More info: http://wiki.xen.org/xenwiki/XenUSBPassthrough |
|||
}} |
}} |
||
{{project |
{{project |
||
|Project=Enabling the 9P File System transport as a paravirt device |
|||
|Project=Blkback improvements |
|||
|Date= |
|Date=01/20/2014 |
||
|Contact= |
|Contact=Andres Lagar-Cavilla <andres@lagarcavilla.org> |
||
| |
|GSoC=Yes |
||
|Desc=VirtIO provides a 9P FS transport, which is essentially a paravirt file system device. VMs can mount arbitrary file system hierarchies exposed by the backend. The 9P FS specification has been around for a while, while the VirtIO transport is relatively new. The project would consist of implementing a classic Xen front/back pv driver pair to provide a transport for the 9P FS Protocol. |
|||
Blkback requires a number of improvements, some of them being: |
|||
* Multiple disks in a guest cause contention in the global pool of pages. |
|||
* There is only one ring page and with SSDs nowadays we should make this larger, implementing some multi-page support. |
|||
* With multi-page it becomes apparent that the segment size ends up wasting a bit of space on the ring. BSD folks fixed that by negotiating a new parameter to utilize the full size of the ring. |
|||
* Add DIF/DIX support [http://oss.oracle.com/~mkp/docs/lpc08-data-integrity.pdf] for T10 PI (Protection Information), to support data integrity fields and checksums. |
|||
* Further perf evaluation needs to be done to see how it behaves under high load. |
|||
}} |
|||
* More info: http://www.linux-kvm.org/page/9p_virtio |
|||
{{project |
|||
|Project=Netback overhaul |
|||
|Date=02/08/2012 |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|||
Wei Liu posted RFC patches that make the driver be multi-page, multi-event channel and with a page-pool. However not all the issues have been addressed yet, meaning that the patches need to be finished and cleaned up yet. Additively, a zero-copy implementation can be considered. Patch serie and discussions: |
|||
* http://lists.xen.org/archives/html/xen-devel/2012-01/msg02561.html |
|||
* http://www.spinics.net/lists/linux-nfs/msg22575.html |
|||
}} |
|||
|Skills= Required skills include knowledge of kernel hacking, file system internals. Desired skills include: understanding of Xen PV driver structure, and VirtIO. |
|||
{{project |
|||
|Project=PAT writecombine fixup |
|||
|Date=02/08/2012 |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|||
The writecombine feature (especially for graphic adapters) is turned off due to stability reasons. More specifically, the code involved in page transition from WC to WB gets confused about the PSE bit state in the page, resulting in a set of repeated warnings. |
|||
For more informations please check: |
|||
* Linux git revision 8eaffa67b43e99ae581622c5133e20b0f48bcef1 |
|||
* http://lists.xen.org/archives/html/xen-devel/2012-06/msg01950.html |
|||
}} |
|||
{{project |
|||
|Project=ACPI S3-state investigation and fixup |
|||
|Date=02/08/2012 |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|||
During Linux-3.3 release the the S3-state was supposed to work including these patches: |
|||
* https://git.kernel.org/?p=linux/kernel/git/konrad/xen.git;a=shortlog;h=refs/heads/devel/acpi-s3.v9 |
|||
|Outcomes=Expected outcome: |
|||
But now it is not working anymore. Scope of the project is understanding the reasons for the issues and fix them. |
|||
* LKML patches for front and back end drivers. |
|||
* In particular, domain should be able to boot from the 9P FS. |
|||
}} |
}} |
||
{{project |
{{project |
||
|Project=OVMF Compatibility Support Module support in Xen |
|||
|Project=Parallel xenwatch |
|||
|Date= |
|Date=2/5/2014 |
||
|Contact= |
|Contact=Wei Liu <wei.liu2@citrix.com> |
||
|GSoC=Yes |
|||
|Difficulty=Easy |
|||
|Desc= |
|Desc= |
||
Currently Xen supports booting HVM guest with Seabios and OVMF UEFI firmware, but those are separate binaries. OVMF supports adding legacy BIOS blob in its binary with Compatibility Support Module support. We can try to produce single OVMF binary with Seabios in it, thus having only one firmware binary. |
|||
Tasks may include: |
|||
Xenwatch is locked with a coarse lock. For a huge number of guests this represents a scalability issue. The need is to rewrite the xenwatch locking in order to support full scalability. |
|||
* figure out how CSM works |
|||
}} |
|||
* design / implement interface between Hvmloader and the unified binary |
|||
=== Hypervisor === |
|||
{{project |
|||
|Project=Microcode uploader implementation |
|||
|Date=02/08/2012 |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|||
Intel is working on early implementation where the microcode blob would be appended to the initrd image. The kernel would scan for the appropiate magic constant and load the microcode very early. |
|||
The Xen hypervisor can do this similary. |
|||
}} |
}} |
||
{{project |
{{project |
||
|Project= |
|Project=Improvements to firmware handling HVM guests |
||
|Date= |
|Date=07/16/2015 |
||
|Contact= |
|Contact=Andrew Cooper <andrew.cooper3@citrix.com> |
||
|Desc= |
|||
The SEDF scheduler, within Xen, currently deals with events such as a vcpu blocking (in general, stopping running) and unblocking (in general, restarting running) by trying (but failing!) to special case all the possible situations, resulting in the code being rather complicated, ugly, inefficient and hard to maintain. Unified approaches have been proposed for enabling blocking and unblocking in EDF (the algorithm the scheduler uses), without compromising the temporal isolation it provides to the various tasks/vcpus. More specifically, the technique called Constant BandWidth Server (CBS) could easily be implemented. |
|||
|GSoC=Yes |
|GSoC=Yes |
||
|Difficulty=Easy |
|||
}} |
|||
|Skills Needed=Gnu toolchain, Familiarity with Multiboot, C |
|||
{{project |
|||
|Project=SEDF Multiprocessor Support |
|||
|Date=08/08/2012 |
|||
|Contact=Dario Faggioli <[mailto:dario.faggioli@citrix.com dario.faggioli@citrix.com]> |
|||
|Desc= |
|Desc= |
||
Currently, all firmware is compiled into HVMLoader. |
|||
The SEDF scheduler, within Xen, does not properly handle SMP systems, unless specific vcpu pinning is specified by the user. That is a big limitation of the current implementation, especially since EDF (the algorithm the scheduler uses) could be easily extended to work in that situations. |
|||
This works, but is awkward when used using a single distro seabios/ovmf designed for general use. In such a case, any time an update to seabios/ovmf happens, hvmloader must be rebuilt. |
|||
The first thing to do would be turn from using one SEDF runqueue per processor one runqueue per "cluster of processors" (like for instance using one runqueue per-L3, as scredit2 is doing). That would already increase the effectiveness of the scheduler on current hardware a lot. After that, a mechanism for balancing and migrating vcpus among different runqueues can be designed and implemented. |
|||
|GSoC=Yes |
|||
}} |
|||
The purpose of this project is to alter hvmloader to take firmware blobs as a multiboot module rather than requiring them to be built in. This reduces the burden of looking after Xen in a distro environment, and will also be useful for developers wanting to work with multiple versions of firmware. |
|||
{{project |
|||
|Project=Virtual NUMA topology exposure to VMs |
|||
|Date=12/12/2012 |
|||
|Contact=Dario Faggioli <[mailto:dario.faggioli@citrix.com dario.faggioli@citrix.com]> |
|||
|Desc=NUMA (Non-Uniform Memory Access) systems are advanced server platforms, comprising multiple ''nodes''. Each node contains processors and memory. An advanced memory controller allows a node to use memory from all other nodes, but that happens, data transfer is slower than accessing local memory. Memory access times are not uniform and depend on the location of the memory and the node from which it is accessed, hence the name. |
|||
As an extension, support loading an OVMF NVRAM blob. This enabled EFI NVRAM support for guests. |
|||
Ideally, each VM should have its memory allocated out of just one node, and if its VCPUs are always run there, both throughput and latency are kept to the maximum possible level. However, there are a number of reasons for this not to be possible. In such case, i.e., if a VM ends up on having its memory and executing consistently on multiple nodes, we should make sure it knows it's running on a NUMA platform --a smaller one than the actual host, but still NUMA. This is something very important for some specific workloads, for instance, all the HPC ones. In fact, it the guest OS (and application) has any NUMA support, exporting a virtual topology to the guest is the only way to render that effective, and perhaps filling, at least to some extent the gap introduced by the needs of distributing the guests on more than one node. Just for reference, this feature, under the name of vNUMA, is one of the key and most advertised ones of VMWare vSphere 5 ("vNUMA: what it is and why it matters"). |
|||
This project aims at introducing virtual NUMA in Xen. This has some non-trivial interaction with other aspects of the NUMA support of Xen itself, namely automatic placement at VM creation time, dynamic memory migration among nodes, and others, meaning that some design decision needs to be made. After that, virtual topology exposure will be implemented for all the kind of guests supported by Xen. |
|||
|GSoC=Yes |
|||
}} |
}} |
||
=== Hypervisor === |
|||
{{project |
{{project |
||
|Project=Introducing PowerClamp-like driver for Xen |
|||
|Project=NUMA effects on inter-VM communication and on multi-VM workloads |
|||
|Date= |
|Date=01/22/2013 |
||
|Contact= |
|Contact=George Dunlap <george.dunlap@eu.citrix.com> |
||
|Desc= |
|||
|Desc=NUMA (Non-Uniform Memory Access) systems are advanced server platforms, comprising multiple ''nodes''. Each node contains processors and memory. An advanced memory controller allows a node to use memory from all other nodes, but that happens, data transfer is slower than accessing local memory. Memory access times are not uniform and depend on the location of the memory and the node from which it is accessed, hence the name. |
|||
PowerClamp was introduced to Linux in late 2012 in order to allow users to set a system-wide maximum |
|||
power usage limit. This is particularly useful for data centers, where there may be a need to |
|||
If a workload is made up of more than just a VM, running on the same NUMA host, it might be best to have two (or more) VMs share a node, as well as right the opposite, depending on the specific characteristics of he workload itself, and this might be considered during placement, memory migration and perhaps scheduling. |
|||
reduce power consumption based on availability of electricity or cooling. A [http://lwn.net/Articles/528124/ more complete writeup] |
|||
is available at LWN. |
|||
The idea is that sometimes you have a bunch of VMs that would like to ''cooperate'', and sometimes you have a bunch of VMs that would like to be kept as apart as possible from other VMs (''competitive''). In the ''cooperative'' VMs scenario, one wants to optimize for data flowing across VMs in the same host, e.g., because a lot of data copying is involved (a WebApp and DB VMs working together). This means trying to have VMs sharing data in the same node and, if possible, even in the same PCPU's caches, in order to maximize the memory throughput between the VMs. On the other hand, in the ''competitive'' VMs scenario, one wants to optimize for data flowing between the VMs and outside the host (e.g., when PCI-passthrough is used for NICs). In this case it would be a lot better for these VMs to use memory from different nodes and avoid wasting each other cache lines. |
|||
These same arguments apply to Xen. The purpose of this project would be to implement a similar functionality in Xen, |
|||
This project aims at making it possible for the Xen virtualization platform (intended as hypervisor + toolstack) to take advantage of this knowledge about the characteristics of the workload and use it to maximize performances. A first step would be to enhance the automatic NUMA placement algorithm to consider the ''cooperative''-ness and/or the ''competitive''-ness of a VM during placement itself, if provided with such information by the user. A much more complicated development could be to have this relationship between the various running VMs guessed automatically on-line (e.g., by watching the memory mappings and looking for specific patterns), and update the situation accordingly. |
|||
and to make it interface as well as possible with the Linux PowerClamp tools, so that the same tools could be used |
|||
for both. [[GSoC_2013#powerclamp-for-xen]] |
|||
|GSoC=Yes |
|GSoC=Yes |
||
}} |
}} |
||
Line 205: | Line 109: | ||
|Project=Integrating NUMA and Tmem |
|Project=Integrating NUMA and Tmem |
||
|Date=08/08/2012 |
|Date=08/08/2012 |
||
|Contact= |
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>, Dario Faggioli <[mailto:dario.faggioli@citrix.com dario.faggioli@citrix.com]> |
||
|Desc=NUMA (Non-Uniform Memory Access) systems are advanced server platforms, comprising multiple ''nodes''. Each node contains processors and memory. An advanced memory controller allows a node to use memory from all other nodes, but that happens, data transfer is slower than accessing local memory. Memory access times are not uniform and depend on the location of the memory and the node from which it is accessed, hence the name. |
|Desc=NUMA (Non-Uniform Memory Access) systems are advanced server platforms, comprising multiple ''nodes''. Each node contains processors and memory. An advanced memory controller allows a node to use memory from all other nodes, but that happens, data transfer is slower than accessing local memory. Memory access times are not uniform and depend on the location of the memory and the node from which it is accessed, hence the name. |
||
Line 215: | Line 119: | ||
=== Userspace Tools === |
=== Userspace Tools === |
||
{{project |
|||
|Project=Convert PyGrub to C |
|||
|Date=15/11/2012 |
|||
|Contact=Roger Pau Monné <[mailto:roger.pau@citrix.com roger.pau@citrix.com]> |
|||
|Desc= |
|||
With the replacement of xend with xl/libxl, PyGrub is the only remaining Python userspace component of the Xen tools. Since it already depends on a C library (libfsimage), converting it to C code should not be a huge effort. PyGrub Python code is no more than a parser to grub and syslinux configuration files. |
|||
Some embedded distros (mainly Alpine Linux) already mentioned it's interest in dropping the Python package as a requirement for a Dom0, this will make a Xen Dom0 much more smaller. |
|||
|GSoC=Yes |
|||
}} |
|||
{{project |
{{project |
||
Line 235: | Line 128: | ||
Linux hotplug scripts should be analized, providing a good description of what each hotplug script is doing. After this, scripts should be cleaned, putting common pieces of code in shared files across all scripts. A Coding style should be applied to all of them when the refactoring is finished. |
Linux hotplug scripts should be analized, providing a good description of what each hotplug script is doing. After this, scripts should be cleaned, putting common pieces of code in shared files across all scripts. A Coding style should be applied to all of them when the refactoring is finished. |
||
[[GSoC_2013#linux-hotplug-scripts]] |
|||
|GSoC=Yes |
|GSoC=Yes |
||
}} |
}} |
||
Line 242: | Line 137: | ||
|Date=15/11/12 |
|Date=15/11/12 |
||
|Contact=[mailto:ian.campbell@citrix.com Ian Campbell] |
|Contact=[mailto:ian.campbell@citrix.com Ian Campbell] |
||
|Desc=Currently xl and xapi (the XCP toolstack) have very different concepts about domain configuration, disk image storage etc. |
|Desc=Currently [[XL|xl]] (the toolstack supplied alongside Xen) and [[XAPI|xapi]] (the XCP toolstack) have very different concepts about domain configuration, disk image storage etc. In the XCP model domain configuration is persistent and stored in a data base while under xl domain configuration is written in configuration files. Likewise disk images are stored as VDIs in Storage Repositories while under xl disk images are simply files or devices in the dom0 filesystem. For more information on xl see [[XL]]. For more information on XCP see [[XCP Overview]]. |
||
This project is to produce one or more command-line tools which support migrating VMs between these toolstacks. |
|||
One tool should be provided which takes an xl configuration file and |
One tool should be provided which takes an xl configuration file and details of an XCP pool. Using the XenAPI XML/RPC interface It should create a VM in the pool with a close approximation of the same configuration and stream the configured disk image into a selected Storage Repository. |
||
A second tool should be provided which performs the opposite operation, i.e. give a reference to a VM residing in an XCP pool it should produce an XL compatible configuration file and stream the |
A second tool should be provided which performs the opposite operation, i.e. give a reference to a VM residing in an XCP pool it should produce an XL compatible configuration file and stream the disk image(s) our of Xapi into a suitable format. |
||
These tools could be reasonably bundled as part of either toolstack and by implication could be written in either C, Ocaml or some other suitable language. |
These tools could be reasonably bundled as part of either toolstack and by implication could be written in either C, Ocaml or some other suitable language. |
||
Line 252: | Line 149: | ||
The tool need not operate on a live VM but that could be considered a stretch goal. |
The tool need not operate on a live VM but that could be considered a stretch goal. |
||
An acceptable alternative to the proposed implementation would be to implement a tool which converts between a commonly used VM container format which is supported by XCP (perhaps OVF or similar) and the xl toolstack configuration file and disk image |
An acceptable alternative to the proposed implementation would be to implement a tool which converts between a commonly used VM container format which is supported by XCP (perhaps [http://en.wikipedia.org/wiki/Open_Virtualization_Format OVF] or similar) and the xl toolstack configuration file and disk image formats. |
||
[[GSoC_2013#xl-to-xcp-vm-motion]] |
|||
|GSoC=Yes |
|GSoC=Yes |
||
}} |
}} |
||
=== Performance === |
|||
{{project |
{{project |
||
|Project=Allowing guests to boot with a passed-through GPU as the primary display |
|||
|Project=Performance tools overhaul |
|||
|Date= |
|Date=01/22/2013 |
||
|Contact= |
|Contact=George Dunlap <george.dunlap@eu.citrix.com> |
||
|Desc= |
|Desc= |
||
One of the primary drivers of Xen in the "consumer market" of the open-source world is the ability to |
|||
Generally, works on the performance tool themselves should be listes separately to the [[Xen_Profiling:_oprofile_and_perf]] wiki page. |
|||
pass through GPUs to guests -- allowing people to run Linux as their main desktop but easily play |
|||
games requiring proprietary operating systems without rebooting. |
|||
GPUs can be easily passed through to guests as secondary displays, but as of yet cannot be passed |
|||
through as primary displays. The main reason is the lack of ability to load the VGA BIOS from the card into the guest. |
|||
The purpose of this project would be to allow HVM guests to load the physical card's VGA bios, so that the guest can |
|||
boot with it as the primary display. |
|||
[[GSoC_2013#gpu-passthrough]] |
|||
|GSoC=Yes |
|||
}} |
}} |
||
=== Upstream bugs! === |
|||
{{project |
{{project |
||
|Project= |
|Project=Advanced Scheduling Parameters |
||
|Date= |
|Date=01/22/2013 |
||
|Contact= |
|Contact=George Dunlap <george.dunlap@eu.citrix.com> |
||
|Desc= |
|Desc= |
||
The credit scheduler provides a range of "knobs" to control guest behavior, including CPU weight and caps. However, |
|||
VCPU hotplug. [https://lkml.org/lkml/2012/4/30/198] |
|||
a number of users have requested the ability to encode more advanced scheduling logic. For instance, "Let this VM max out for 5 minutes out of any given hour; but after that, impose a cap of 20%, so that even if the system is idle he can't an unlimited amount of CPU power without paying for a higher level of service." |
|||
To get this its as easy as having this in your guest config: |
|||
<pre> |
|||
vcpus=2 |
|||
maxvcpus=3 |
|||
</pre> |
|||
And when you launch the guest to play with 'xm vcpu-set 0 2', xm vcpu-set 0 3' |
|||
and see the guest forget about one of the CPUs. |
|||
This is too coarse-grained to do inside the hypervisor; a user-space tool would be sufficient. The goal of this project would |
|||
This is what you will see in the guest: |
|||
be to come up with a good way for admins to support these kinds of complex policies in a simple and robust way. |
|||
|GSoC=Yes |
|||
udevd-work[2421]: error opening ATTR{/sys/devices/system/cpu/cpu2/online} for writing: No such file or directory |
|||
}} |
|||
If you instrument udev and look at the code you will find somebody came up with |
|||
a "fix": http://serverfault.com/questions/329329/pv-ops-kernel-ignoring-cpu-hotplug-under-xen-4-domu |
|||
But the real fix is what Greg outlines in the URL above. |
|||
}} |
|||
{{project |
{{project |
||
|Project= |
|Project=CPU/RAM/PCI diagram tool |
||
|Date= |
|Date=01/30/2013 |
||
|Contact= |
|Contact=Andy Cooper <andrew.cooper3@citrix.com> |
||
|Difficulty=Low to medium |
|||
|Desc= |
|||
|Skills=Linux scripting; basic understanding of PC server hardware |
|||
|Desc=It is often useful in debugging kernel, hypervisor or performance problems to understand the bus topology of a server. This project will create a layout diagram for a server automatically using data from ACPI Tables, SMBios Tables, lspci output etc. This tool would be useful in general Linux environments including Xen and KVM based virtualisation systems. |
|||
There are many avenues for extension such as labelling relevant hardware errata, performing bus throughput calculations etc. |
|||
<pre> |
|||
|Outcomes=A tool is created that can either run on a live Linux system or offline using captured data to produce a graphical representation of the hardware topology of the system including bus topology, hardware device locations, memory bank locations, etc. The tool would be submitted to a suitable open-source project such as the Xen hypervisor project or XCP. |
|||
[ 0.073006] WARNING: at /home/konrad/ssd/linux/kernel/rcutree.c:1547 __rcu_process_callbacks+0x42e/0x440() |
|||
|GSoC=yes}} |
|||
[ 0.073008] Modules linked in: |
|||
[ 0.073010] Pid: 12, comm: migration/2 Not tainted 3.5.0-rc2 #2 |
|||
[ 0.073011] Call Trace: |
|||
[ 0.073017] <IRQ> [<ffffffff810718ea>] warn_slowpath_common+0x7a/0xb0 |
|||
</pre> |
|||
which I get with this guest config: |
|||
<pre> |
|||
vcpus=2 |
|||
maxvcpus=3 |
|||
</pre> |
|||
{{project |
|||
|Project=KDD (Windows Debugger Stub) enhancements |
|||
|Date=01/30/2013 |
|||
|Contact=Paul Durrant <paul.durrant@citrix.com> |
|||
|Difficulty=Medium |
|||
|Skills=C, Kernel Debuggers, Xen, Windows |
|||
|Desc=kdd is a Windows Debugger Stub for Xen hypervisor. It is OSS found under http://xenbits.xen.org/hg/xen-unstable.hg/tools/debugger/kdd |
|||
kdd allows you to debug a running Windows virtual machine on Xen using standard Windows kernel debugging tools like WinDbg. kdd is an external debugger stub for the windows kernel. |
|||
Windows can be debugged without enabling the debugger stub inside windows kernel by using kdd. This is important for debugging hard to reproduce problems on Windows virtual machines that may not have debugging enabled. |
|||
Expected Results: |
|||
Here is what Paul says: https://lkml.org/lkml/2012/6/19/360 |
|||
# Add support for Windows 8 (x86, x64) to kdd |
|||
}} |
|||
# Add support for Windows Server 2012 to kdd |
|||
# Enhance kdd to allow WinDbg to write out usable Windows memory dumps (via .dump debugger extension) for all supported versions |
|||
# Produce a user guide for kdd on Xen wiki page |
|||
Nice to have: Allow kdd to operate on a Windows domain checkpoint file (output of xl save for e.g.) |
|||
|Outcomes=Code is submitted to xen-devel@xen.org for inclusion in the xen-unstable project. |
|||
|GSoC=yes}} |
|||
{{project |
{{project |
||
|Project= |
|Project=Lazy restore using memory paging |
||
|Date= |
|Date=01/20/2014 |
||
|Contact= |
|Contact=Andres Lagar-Cavilla <andres@lagarcavilla.org> |
||
| |
|GSoC=Yes |
||
|Desc=VM Save/restore results in a boatload of IO and non-trivial downtime as the entire memory footprint of a VM is read from IO. |
|||
Xen memory paging support in x86 is now mature enough to allow for lazy restore, whereby the footprint of a VM is backfilled while the VM executes. If the VM hits a page not yet present, it is eagerly paged in. |
|||
http://www.spinics.net/lists/kernel/msg1350338.html |
|||
There has been some concern recently about the lack of docs and/or mature tools that use xen-paging. This is a good way to address the problem. |
|||
I came up with a patch for the problem that William found: |
|||
http://lists.xen.org/archives/html/xen-devel/2012-05/msg01963.html |
|||
|Skills= A good understanding of save/restore, and virtualized memory management (e.g. EPT, shadow page tables, etc). In principle the entire project can be implemented in user-space C code, but it may be the case that new hypercalls are needed for performance reasons. |
|||
and narrowed it down the Linux calling xen_set_pte with a PMD flag |
|||
(so trying to setup a 2MB page). Currently the implemenation of xen_set_pte |
|||
can't do 2MB but it will gladly accept the argument and the multicall will |
|||
fail. |
|||
|Outcomes=Expected outcome: |
|||
Peter did not like the x86 implemenation so I was thinking to implement |
|||
* Mainline patches for libxc and libxl |
|||
some code in xen_set_pte that will detect that its a PMD flag and do |
|||
"something". That something could be either probe the PTE's and see if there |
|||
is enough space and if so just call the multicall 512 times, or perform |
|||
a hypercall to setup a super-page. .. But then I wasn't sure how we would |
|||
tear down such super-page. |
|||
}} |
}} |
||
{{project |
|||
|Project=CPUID Programming for Humans |
|||
|Date=02/04/2014 |
|||
|Contact=Andres Lagar-Cavilla <andres@lagarcavilla.org> |
|||
|GSoC=Yes |
|||
|Desc=When creating a VM, a policy is applied to mask certain CPUID features. Right now it's black magic. |
|||
THe KVM stack has done an excellent job of making this human-useable, and understandable. |
|||
For example, in a qemu-kvm command-line you may encounter: |
|||
{{project |
|||
|Project=Time accounting for stolen ticks. |
|||
-cpu SandyBridge,+pdpe1gb,+osxsave,+dca,+pcid,+pdcm,+xtpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme |
|||
|Date=Sep 1 2012 |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
And in <qemu>/target-i386.c you find a fairly comprehensive description of x86 processor models, what CPUID features are inherent, and what CPUID feature each of these symbolic flags enables. |
|||
|Desc= |
|||
In the Xen world, there is a libxc interface to do the same, although it's all hex and register driven. It's effective, yet horrible to use. |
|||
This is http://git.kernel.org/?p=linux/kernel/git/konrad/xen.git;a=shortlog;h=refs/heads/devel/pvtime.v1.1 |
|||
and whether those patches are the right way or the bad way. |
|||
An ideal outcome would have libxl config files and command line absorb a similarly human-friendly description of the CPUID features a user wishes for the VM, and interface appropriately with libxl. Further, autodetection of best CPUID shuold yield a human-readable output to be able to easily understand what the VM thinks about its processor. |
|||
The discussion of this is at http://lists.xen.org/archives/html/xen-devel/2011-10/msg01477.html |
|||
Finally, interfacing with libvirt should be carefully considered. |
|||
CPUID management is crucial in a heterogeneous cluster where migrations and save restore require careful processor feature selection to avoid blow-ups. |
|||
|Skills= A good understanding of C user-land programming, and the ability to dive into qemu/libvirt (for reference code and integration), as well as libxc and libxl (for implementation). |
|||
|Outcomes=Expected outcome: |
|||
* Mainline patches for libxl |
|||
}} |
}} |
||
=== |
=== Mirage and XAPI projects === |
||
There are separate wiki pages about XCP and XAPI related projects. Make sure you check these out aswell! |
There are separate wiki pages about XCP and XAPI related projects. Make sure you check these out aswell! |
||
{{project |
{{project |
||
|Project= |
|Project=Create a tiny VM for easy load testing |
||
|Date= |
|Date=01/30/2013 |
||
|Contact= |
|Contact=Dave Scott <''first.last''@citrix.com> |
||
|Difficulty=Medium |
|||
|Desc= |
|||
|Skills=OCaml |
|||
MirageOS (http://openmirage.org) is a type-safe exokernel written in OCaml which generates highly specialised "appliance" VMs that run directly on Xen without requiring an intervening guest kernel. We would like to use the Mirage/Xen libraries to fuzz test all levels of a typical cloud toolstack. Mirage has low-level bindings for Xen hypercalls, mid-level bindings for domain management, and high-level bindings to XCP for cluster management. This project would build a QuickCheck-style fuzzing mechanism that would perform millions of random operations against a real cluster, and identify bugs with useful backtraces. |
|||
|Desc=The http://www.openmirage.org/ framework can be used to create tiny 'exokernels': entire software stacks which run directly on the xen hypervisor. These VMs have such a small memory footprint (16 MiB or less) that many of them can be run even on relatively small hosts. The goal of this project is to create a specific 'exokernel' that can be configured to generate a specific I/O pattern, and to create configurations that mimic the boot sequence of Linux and Windows guests. The resulting exokernel will then enable cheap system load testing. |
|||
}} |
|||
The first task is to generate an I/O trace from a VM. For this we could use 'xen-disk', a userspace Mirage application which acts as a block backend for xen guests (see http://openmirage.org/wiki/xen-synthesize-virtual-disk). Following the wiki instructions we could modify a 'file' backend to log the request timestamps, offsets, buffer lengths. |
|||
The second task is to create a simple kernel based on one of the MirageOS examples (see http://github.com/mirage/mirage-skeleton). The 'basic_block' example shows how reads and writes are done. The previously-generated log could be statically compiled into the kernel and executed to generate load. |
|||
|Outcomes=1. a repository containing an 'exokernel' (see http://github.com/mirage/mirage-skeleton) |
|||
2. at least 2 I/O traces, one for Windows boot and one for Linux boot (any version) |
|||
|GSoC=yes}} |
|||
{{project |
{{project |
||
|Project= |
|Project=Fuzz testing Xen with Mirage |
||
|Date=28/11/2012 |
|Date=28/11/2012 |
||
|Contact=Anil Madhavapeddy <anil@recoil.org> |
|Contact=Anil Madhavapeddy <anil@recoil.org> |
||
|Skills=OCaml |
|||
|Difficulty=medium |
|||
|Desc= |
|Desc= |
||
MirageOS (http://openmirage.org) is a type-safe exokernel written in OCaml which generates highly specialised "appliance" VMs that run directly on Xen without requiring an intervening kernel. We would like to |
MirageOS (http://openmirage.org) is a type-safe exokernel written in OCaml which generates highly specialised "appliance" VMs that run directly on Xen without requiring an intervening guest kernel. We would like to use the Mirage/Xen libraries to fuzz test all levels of a typical cloud toolstack. Mirage has low-level bindings for Xen hypercalls, mid-level bindings for domain management, and high-level bindings to XCP for cluster management. This project would build a QuickCheck-style fuzzing mechanism that would perform millions of random operations against a real cluster, and identify bugs with useful backtraces. |
||
The first task would be to become familiar with a specification-based testing tool like Kaputt (see http://kaputt.x9c.fr/). The second task would be to choose an interface for testing; perhaps one of the hypercall ones. |
|||
These API bindings can be used to provide operating-system-level abstractions to the exokernels. For example, hotplugging a vCPU would perform a "VM create" at the XCP level, and make the extra process known to the Mirage runtime so that it can be scheduled for computation. We should be able to spin up 1000s of "CPUs" by using such APIs in a cluster environment. |
|||
[[GSoC_2013#fuzz-testing-mirage]] |
|||
|Outcomes=1. a repo containing a fuzz testing tool; 2. some unexpected behaviour with a backtrace (NB it's not required that we find a critical bug, we just need to show the approach works) |
|||
|GSoC=yes |
|||
}} |
}} |
||
Line 376: | Line 305: | ||
|Date=28/11/2012 |
|Date=28/11/2012 |
||
|Contact=Anil Madhavapeddy <anil@recoil.org> |
|Contact=Anil Madhavapeddy <anil@recoil.org> |
||
|Difficulty=hard |
|||
|Skills=OCaml |
|||
|Desc= |
|Desc= |
||
MirageOS (http://openmirage.org) is a type-safe exokernel written in OCaml which generates highly specialised "appliance" VMs that run directly on Xen without requiring an intervening guest kernel. An interesting consequence of programming Mirage applications in a functional language is that the device drivers can be substituted with emulated equivalents. Therefore, it should be possible to test an application under extreme load conditions as a simulation, and then recompile the *same* code into production. The simulation can inject faults and test data structures under distributed conditions, but using a fraction of the resources required for a real deployment. |
MirageOS (http://openmirage.org) is a type-safe exokernel written in OCaml which generates highly specialised "appliance" VMs that run directly on Xen without requiring an intervening guest kernel. An interesting consequence of programming Mirage applications in a functional language is that the device drivers can be substituted with emulated equivalents. Therefore, it should be possible to test an application under extreme load conditions as a simulation, and then recompile the *same* code into production. The simulation can inject faults and test data structures under distributed conditions, but using a fraction of the resources required for a real deployment. |
||
The first task is to familiarise yourself with a typical Mirage application, I suggest a webserver (see https://github.com/mirage/mirage-www). The second task is to replace the ethernet driver with a synthetic equivalent, so we can feed it simulated traffic. Third, we should inject simulated web traffic (recorded from a real session) and attempt to determine how the application response time varies with load (number of connections; incoming packet rate). |
|||
This project will require a solid grasp of distributed protocols, and functional programming. Okasaki's book will be a useful resource... |
This project will require a solid grasp of distributed protocols, and functional programming. Okasaki's book will be a useful resource... |
||
|Outcomes=1. a repo/branch with a fake ethernet device and a traffic simulator; 2. an interesting performance graph |
|||
|GSoC=no, too much work |
|||
}} |
}} |
||
Line 386: | Line 321: | ||
|Date=28/11/2012 |
|Date=28/11/2012 |
||
|Contact=Anil Madhavapeddy <anil@recoil.org> |
|Contact=Anil Madhavapeddy <anil@recoil.org> |
||
|Difficulty=hard |
|||
|Skills=OCaml, Haskell, Java |
|||
|Desc= |
|Desc= |
||
There are several languages available that compile directly to Xen microkernels, instead of running under an intervening guest OS. We're dubbing such specialised binaries as "unikernels". Examples include: |
There are several languages available that compile directly to Xen microkernels, instead of running under an intervening guest OS. We're dubbing such specialised binaries as "unikernels". Examples include: |
||
Line 392: | Line 329: | ||
* Haskell: HalVM https://github.com/GaloisInc/HaLVM#readme |
* Haskell: HalVM https://github.com/GaloisInc/HaLVM#readme |
||
* Erlang: ErlangOnXen http://erlangonxen.org |
* Erlang: ErlangOnXen http://erlangonxen.org |
||
* Java: GuestVM http://labs.oracle.com/projects/guestvm/ |
* Java: GuestVM http://labs.oracle.com/projects/guestvm/, OSv https://github.com/cloudius-systems/osv |
||
Each of these is in a different state of reliability and usability. We would like to survey all of them, build some common representative benchmarks to evaluate them, and build a common toolchain based on XCP that will make it easier to share code across such efforts. This project will require a reasonable grasp of several programming languages and runtimes, and should be an excellent project to learn more about the innards of popular languages. |
Each of these is in a different state of reliability and usability. We would like to survey all of them, build some common representative benchmarks to evaluate them, and build a common toolchain based on XCP that will make it easier to share code across such efforts. This project will require a reasonable grasp of several programming languages and runtimes, and should be an excellent project to learn more about the innards of popular languages. |
||
[[GSoC_2013#unikernel-substrate]] |
|||
|Outcomes=1. a repo containing a common library of low-level functions; 2. a proof of concept port of at least 2 systems to this new library |
|||
|GSoC=no, too difficult |
|||
}} |
}} |
||
Line 409: | Line 350: | ||
}} |
}} |
||
<!-- |
|||
* XCP and XAPI development projects: [[XAPI project suggestions]] |
* XCP and XAPI development projects: [[XAPI project suggestions]] |
||
* XCP short-term roadmap: [[XCP short term roadmap]] |
* XCP short-term roadmap: [[XCP short term roadmap]] |
||
* XCP monthly developer meetings: [[XCP Monthly Meetings]] |
* XCP monthly developer meetings: [[XCP Monthly Meetings]] |
||
--> |
|||
* XAPI developer guide: [[XAPI Developer Guide]] |
* XAPI developer guide: [[XAPI Developer Guide]] |
||
Line 417: | Line 360: | ||
Please see [[XenRepositories]] wiki page! |
Please see [[XenRepositories]] wiki page! |
||
[[Category: |
[[Category:Archived]] |
||
[[Category:Xen]] |
[[Category:Xen]] |
||
[[Category:Xen 4. |
[[Category:Xen 4.4]] |
||
[[Category:PVOPS]] |
[[Category:PVOPS]] |
||
[[Category:Developers]] |
[[Category:Developers]] |
Latest revision as of 19:04, 18 February 2016
This page lists various Xen related development projects that can be picked up by anyone! If you're interesting in hacking Xen this is the place to start! Ready for the challenge?
To work on a project:
- Find a project that looks interesting (or a bug if you want to start with something simple)
- Send an email to xen-devel mailinglist and let us know you started working on a specific project.
- Post your ideas, questions, RFCs to xen-devel sooner than later so you can get comments and feedback.
- Send patches to xen-devel early for review so you can get feedback and be sure you're going into correct direction.
- Your work should be based on xen-unstable development tree, if it's Xen and/or tools related. After your patch has been merged to xen-unstable it can be backported to stable branches (Xen 4.2, Xen 4.1, etc).
- Your kernel related patches should be based on upstream kernel.org Linux git tree (latest version).
xen-devel mailinglist subscription and archives: http://lists.xensource.com/mailman/listinfo/xen-devel
Before to submit patches, please look at Submitting Xen Patches wiki page.
If you have new ideas, suggestions or development plans let us know and we'll update this list!
List of projects
Domain support
Utilize Intel QuickPath on network and block path.
|
Enabling the 9P File System transport as a paravirt device
|
OVMF Compatibility Support Module support in Xen
|
Improvements to firmware handling HVM guests
|
Hypervisor
Introducing PowerClamp-like driver for Xen
|
Integrating NUMA and Tmem
|
Userspace Tools
Refactor Linux hotplug scripts
|
XL to XCP VM motion
|
Allowing guests to boot with a passed-through GPU as the primary display
|
Advanced Scheduling Parameters
|
CPU/RAM/PCI diagram tool
|
KDD (Windows Debugger Stub) enhancements
|
Lazy restore using memory paging
|
CPUID Programming for Humans
|
Mirage and XAPI projects
There are separate wiki pages about XCP and XAPI related projects. Make sure you check these out aswell!
Create a tiny VM for easy load testing
|
Fuzz testing Xen with Mirage
|
From simulation to emulation to production: self-scaling apps
|
Towards a multi-language unikernel substrate for Xen
|
DRBD Integration
|
- XAPI developer guide: XAPI Developer Guide
Please see XenRepositories wiki page!