Archived/GSoc 2014: Difference between revisions
(QuickData updated) |
Lars.kurth (talk | contribs) No edit summary |
||
(24 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{InfoLeft|The application deadline for GSoC has closed for 2014.}} |
|||
__TOC__ |
__TOC__ |
||
Line 62: | Line 64: | ||
* We do have our own [[GSoC Student Application Template]] form |
* We do have our own [[GSoC Student Application Template]] form |
||
=== GSoC Projects that were accepted in 2014 === |
|||
== List of peer reviewed Projects == |
|||
=== Domain support (PVOPS and Linux) === |
|||
{{project |
{{project |
||
|Project= |
|Project=Implement Xen PVUSB support in xl/libxl toolstack |
||
|Date= |
|Date=01/12/2012 |
||
|Contact= |
|Contact=Mentor: George Dunlap, Student: Bo Cao |
||
|GSoC=Yes |
|GSoC=Yes |
||
|Desc= |
|||
xl/libxl does not currently support Xen PVUSB functionality. Port the feature from xm/xend to xl/libxl. Necessary operations include: |
|||
* Task 1: Implement PVUSB in xl/libxl, make it functionally equivalent to xm/xend. |
|||
* Send to xen-devel mailinglist for review, comments. |
|||
* Fix any upcoming issues. |
|||
* Repeat until merged to xen-unstable. |
|||
* See above for PVUSB drivers for dom0/domU. |
|||
* Xen PVUSB supports both PV domUs and HVM guests with PV drivers. |
|||
* More info: http://wiki.xen.org/xenwiki/XenUSBPassthrough |
|||
{{Comment|[[User:Lars.kurth|Lars.kurth]] 14:14, 23 January 2013 (UTC):}} Should be suitable, but desc needs. Rate in terms of challenges, size and skill. Also kernel functionality is not yet upstreamed. Maybe Suse kernel. |
|||
}} |
|||
{{project |
|||
|Project=Lazy restore using memory paging |
|||
|Date=01/20/2014 |
|||
|Contact=Mentor: Andres Lagar-Cavilla, Student: Dushyant Behl |
|||
|Difficulty=Medium |
|Difficulty=Medium |
||
|GSoC=Yes |
|||
|Desc=VM Save/restore results in a boatload of IO and non-trivial downtime as the entire memory footprint of a VM is read from IO. |
|||
Xen memory paging support in x86 is now mature enough to allow for lazy restore, whereby the footprint of a VM is backfilled while the VM executes. If the VM hits a page not yet present, it is eagerly paged in. |
|||
There has been some concern recently about the lack of docs and/or mature tools that use xen-paging. This is a good way to address the problem. |
|||
|Skills= A good understanding of save/restore, and virtualized memory management (e.g. EPT, shadow page tables, etc). In principle the entire project can be implemented in user-space C code, but it may be the case that new hypercalls are needed for performance reasons. |
|||
|Outcomes=Expected outcome: |
|||
* Mainline patches for libxc and libxl |
|||
}} |
|||
* {{Comment|[[User:dushyant|dushyant]]}} Hi, I am working on this project. |
|||
{{project |
|||
|Project=HVM per-event-channel interrupts |
|||
|Date=01/30/2013 |
|||
|Contact=Mentor: Paul Durrant, Student: Yandong Han |
|||
|Skills=C, some prior knowledge of Xen useful |
|||
|Desc=Windows PV drivers currently have to multiplex all event channel processing onto a single interrupt which is registered with Xen using the HVM_PARAM_CALLBACK_IRQ parameter. This results in a lack of scalability when multiple event channels are heavily used, such as when multiple VIFs in the VM as simultaneously under load. |
|||
Goal: Modify Xen to allow each event channel to be bound to a separate interrupt (the association being controlled by the PV drivers in the guest) to allow separate event channel interrupts to be handled by separate vCPUs. There should be no modifications required to the guest OS interrupt logic to support this (as there is with the current Linux PV-on-HVM code) as this will not be possible with a Windows guest. |
|||
|Outcomes=Code is submitted to xen-devel@xen.org for inclusion in xen-unstable |
|||
|GSoC=yes}} |
|||
{{project |
|||
|Project=Mirage OS cloud API support |
|||
|Date=28/11/2013 |
|||
|Contact=Mentor: Dave Scott; Student: Jyotsna Prakash |
|||
|Skills=OCaml |
|||
|Difficulty=medium |
|||
|Desc= |
|Desc= |
||
MirageOS (see http://xenproject.org/developers/teams/mirage-os.html, http://www.openmirage.org/) is a type-safe unikernel written in OCaml which generates highly specialised "appliance" VMs that run directly on Xen without requiring an intervening kernel. A MirageOS application typically runs via several communicating kernel instances on the cloud. Today these instances are difficult to manage; we would like to explore strategies for managing these distributed computations using common public cloud APIs such as those exposed by Amazon EC2 and Rackspace. |
|||
Currently Xen supports booting HVM guest with Seabios and OVMF UEFI firmware, but those are separate binaries. OVMF supports adding legacy BIOS blob in its binary with Compatibility Support Module support. We can try to produce single OVMF binary with Seabios in it, thus having only one firmware binary. |
|||
First we need to create pure OCaml API bindings for (e.g.) EC2 and Rackspace (purity is needed to ensure portability). These API bindings can then be used to provide operating-system-level abstractions to the unikernels. For example, a traditional VM might hotplug a vCPU; while a MirageOS application would request a "VM create" using the cloud API and "connect" the new instance to the existing network. We should be able to spin up 1000s of "CPUs" by using such APIs in a cluster environment. |
|||
Tasks may include: |
|||
* figure out how CSM works |
|||
As well as helping Xen/Mirage, the public cloud API bindings will be very useful to other people in other contexts-- a nice side-effect. |
|||
* design / implement interface between Hvmloader and the unified binary |
|||
| Outcomes=Produce a single firmware binary that can be used for legacy boot HVM guest and UEFI HVM guest |
|||
See https://fedoraproject.org/wiki/User:Gholms/EC2_Primer for a primer on how to use EC2 |
|||
| Skills=You need to have understanding of: |
|||
|Outcomes=1. one or more public cloud API bindings plus examples, in a standalone repo on github; 2. an example mirage app which uses these APIs to spin up a new VM |
|||
* Firmware internal |
|||
|GSoC=yes |
|||
* Xen HVM booting process |
|||
* Some C programming skills |
|||
|Review= |
|||
}} |
}} |
||
Line 89: | Line 135: | ||
|Date=01/08/2012 |
|Date=01/08/2012 |
||
|Difficulty=Low-Medium |
|Difficulty=Low-Medium |
||
|Contact=Mentor: Boris Ostrovsky, Student: Tülin İZER |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|Desc= |
||
Line 104: | Line 150: | ||
* build Linux kernel |
* build Linux kernel |
||
}} |
}} |
||
== List of peer reviewed Projects == |
|||
=== Domain support (PVOPS and Linux) === |
|||
{{project |
|||
|Project=OVMF Compatibility Support Module support in Xen |
|||
|Date=2/5/2014 |
|||
|Contact=Wei Liu <wei.liu2@citrix.com> |
|||
|GSoC=Yes |
|||
|Difficulty=Medium |
|||
|Desc= |
|||
OVMF is a project to enable UEFI support for virtual machine. http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=OVMF |
|||
SeaBIOS is a legacy BIOS implementation used by Xen to boot HVM guests. http://www.coreboot.org/SeaBIOS |
|||
Currently Xen supports booting HVM guest with Seabios and OVMF UEFI firmware, but those are separate binaries. OVMF supports adding legacy BIOS blob in its binary with Compatibility Support Module support. We can try to produce single OVMF binary with Seabios in it, thus having only one firmware binary. |
|||
Tasks may include: |
|||
* understand the boot process of HVM guests |
|||
* figure out how CSM works |
|||
* design / implement interface between Hvmloader and the unified binary |
|||
| Outcomes=Produce a single firmware binary that can be used for legacy boot HVM guest and UEFI HVM guest |
|||
| Skills=You need to have understanding of: |
|||
* Firmware internal |
|||
* Some C programming skills |
|||
|Review= |
|||
}} |
|||
* {{Comment|[[User:sdytlm|sdytlm]]}} Hi, I am interested to work on this project. |
|||
{{project |
{{project |
||
Line 129: | Line 204: | ||
|GSoC=Yes |
|GSoC=Yes |
||
}} |
}} |
||
{{project |
|||
|Project=Xen block backend/frontend multiqueue support |
|||
|Date=03/09/2014 |
|||
|Difficulty=High |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|||
The Linux kernel (and FreeBSD, Windows, etc) have ParaVirtualized (PV) drivers to perform |
|||
the I/O instead of using the emulated devices that appear in QEMU (IDE, SCSI, etc). This is |
|||
done because the emulation of the IDE drivers is quite slow - and if you dig in how it |
|||
actually is done - it is full of bit-banging registers. The PV drivers are an answer to this |
|||
and eliminate the need for emulation. The mechanism by which they work is |
|||
nicely draw out in http://wiki.xen.org/wiki/PV_Protocol |
|||
and http://www.informit.com/articles/article.aspx?p=1160234&seqNum=3 |
|||
("Definitive Guide to the Xen Hypervisor, The") |
|||
There have been improvements done in it - see http://wiki.xen.org/wiki/Xen_4.3_Block_Protocol_Scalability |
|||
and http://blog.xen.org/index.php/2013/08/07/indirect-descriptors-for-xen-pv-disks/ |
|||
However, there are still room for improvement. We can utilize the new |
|||
block multiqueue API support in Linux (See https://lwn.net/Articles/552904/ |
|||
and http://kernel.dk/systor13-final18.pdf) |
|||
to allocate per CPU a block thread (which handles the I/O transmission). |
|||
That should provide greater throughput and lower latency for I/O workloads. |
|||
Also see https://docs.google.com/document/d/1Vh5T8Z3Tx3sUEhVB0DnNDKBNiqB_ZA8Z5YVqAsCIjuI |
|||
which has some of the explanation. |
|||
| Skills=You need to have understanding of: |
|||
* Knowledge of Linux kernel |
|||
* How I/O works |
|||
* C language |
|||
|Outcomes=Expected outcome: |
|||
* Patches for the Linux Kernel Mailing list (LKML). |
|||
* Benchmark reports. |
|||
|GSoC=Yes |
|||
}} |
|||
{{project |
{{project |
||
Line 139: | Line 252: | ||
* More info: http://www.linux-kvm.org/page/9p_virtio |
* More info: http://www.linux-kvm.org/page/9p_virtio |
||
* Also the Bell Labs original OS that introduced the 9P protocol: http://plan9.bell-labs.com/sources/plan9/sys/src/ |
|||
|Skills= Required skills include knowledge of kernel hacking, file system internals. Desired skills include: understanding of Xen PV driver structure, and VirtIO. |
|Skills= Required skills include knowledge of kernel hacking, file system internals. Desired skills include: understanding of Xen PV driver structure, and VirtIO. |
||
Line 169: | Line 283: | ||
|Difficulty=Medium |
|Difficulty=Medium |
||
|Skills=C, Kernel Debuggers, Xen, Windows |
|Skills=C, Kernel Debuggers, Xen, Windows |
||
|Desc=kdd is a Windows Debugger Stub for Xen hypervisor. It is OSS found under http://xenbits.xen.org/ |
|Desc=kdd is a Windows Debugger Stub for Xen hypervisor. It is OSS found under http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=tools/debugger/kdd;h=fd82789a678fb8060cc74ebbe0a04dc58309d6d7;hb=refs/heads/master |
||
kdd allows you to debug a running Windows virtual machine on Xen using standard Windows kernel debugging tools like WinDbg. kdd is an external debugger stub for the windows kernel. |
kdd allows you to debug a running Windows virtual machine on Xen using standard Windows kernel debugging tools like WinDbg. kdd is an external debugger stub for the windows kernel. |
||
Windows can be debugged without enabling the debugger stub inside windows kernel by using kdd. This is important for debugging hard to reproduce problems on Windows virtual machines that may not have debugging enabled. |
Windows can be debugged without enabling the debugger stub inside windows kernel by using kdd. This is important for debugging hard to reproduce problems on Windows virtual machines that may not have debugging enabled. |
||
Line 182: | Line 296: | ||
|Outcomes=Code is submitted to xen-devel@xen.org for inclusion in the xen-unstable project. |
|Outcomes=Code is submitted to xen-devel@xen.org for inclusion in the xen-unstable project. |
||
|GSoC=yes}} |
|GSoC=yes}} |
||
{{project |
|||
|Project=CPUID Programming for Humans |
|||
|Date=02/04/2014 |
|||
|Contact=Andres Lagar-Cavilla <andres@lagarcavilla.org> |
|||
|Difficulty=Easy |
|||
|GSoC=Yes |
|||
|Desc=When creating a VM, a policy is applied to mask certain CPUID features. Right now it's black magic. |
|||
The KVM stack has done an excellent job of making this human-useable, and understandable. |
|||
For example, in a qemu-kvm command-line you may encounter: |
|||
-cpu SandyBridge,+pdpe1gb,+osxsave,+dca,+pcid,+pdcm,+xtpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme |
|||
And in <qemu>/target-i386.c you find a fairly comprehensive description of x86 processor models, what CPUID features are inherent, and what CPUID feature each of these symbolic flags enables. |
|||
In the Xen world, there is a libxc interface to do the same, although it's all hex and register driven. It's effective, yet horrible to use. |
|||
An ideal outcome would have libxl config files and command line absorb a similarly human-friendly description of the CPUID features a user wishes for the VM, and interface appropriately with libxl. Further, autodetection of best CPUID shuold yield a human-readable output to be able to easily understand what the VM thinks about its processor. |
|||
Finally, interfacing with libvirt should be carefully considered. |
|||
CPUID management is crucial in a heterogeneous cluster where migrations and save restore require careful processor feature selection to avoid blow-ups. |
|||
See: http://wiki.qemu.org/images/c/c8/Cpu-models-and-libvirt-devconf-2014.pdf |
|||
and https://www.berrange.com/posts/2010/02/15/guest-cpu-model-configuration-in-libvirt-with-qemukvm/ |
|||
and http://blog.xen.org/index.php/2014/01/17/libvirt-support-for-xens-new-libxenlight-toolstack/ |
|||
|Skills= A good understanding of C user-land programming, and the ability to dive into qemu/libvirt (for reference code and integration), as well as libxc and libxl (for implementation). |
|||
|Outcomes=Expected outcome: |
|||
* Mainline patches for libxl |
|||
}} |
|||
* {{Comment|[[User:Vasilev|Vasilev]]}} I am interested in this idea ( [http://lists.xen.org/archives/html/xen-api/2014-03/msg00011.html] ) |
|||
=== Mirage OS === |
=== Mirage OS === |
||
Line 188: | Line 337: | ||
|Project=Create a tiny VM for easy load testing |
|Project=Create a tiny VM for easy load testing |
||
|Date=01/30/2014 |
|Date=01/30/2014 |
||
|Contact=Dave Scott < |
|Contact=Dave Scott <dave.scott@eu.citrix.com> |
||
|Difficulty=Medium |
|Difficulty=Medium |
||
|Skills=OCaml |
|Skills=OCaml |
||
Line 212: | Line 361: | ||
[[GSoC_2013#fuzz-testing-mirage]] |
[[GSoC_2013#fuzz-testing-mirage]] |
||
|Outcomes=1. a repo containing a fuzz testing tool; 2. some unexpected behaviour with a backtrace (NB it's not required that we find a critical bug, we just need to show the approach works) |
|Outcomes=1. a repo containing a fuzz testing tool; 2. some unexpected behaviour with a backtrace (NB it's not required that we find a critical bug, we just need to show the approach works) |
||
|GSoC=yes |
|||
}} |
|||
{{project |
|||
|Project=Mirage OS cloud API support |
|||
|Date=28/11/2013 |
|||
|Contact=Anil Madhavapeddy <anil@recoil.org> |
|||
|Skills=OCaml |
|||
|Difficulty=medium |
|||
|Desc= |
|||
MirageOS (see http://xenproject.org/developers/teams/mirage-os.html, http://www.openmirage.org/) is a type-safe unikernel written in OCaml which generates highly specialised "appliance" VMs that run directly on Xen without requiring an intervening kernel. A MirageOS application typically runs via several communicating kernel instances on the cloud. Today these instances are difficult to manage; we would like to explore strategies for managing these distributed computations using common public cloud APIs such as those exposed by Amazon EC2 and Rackspace. |
|||
First we need to create pure OCaml API bindings for (e.g.) EC2 and Rackspace (purity is needed to ensure portability). These API bindings can then be used to provide operating-system-level abstractions to the unikernels. For example, a traditional VM might hotplug a vCPU; while a MirageOS application would request a "VM create" using the cloud API and "connect" the new instance to the existing network. We should be able to spin up 1000s of "CPUs" by using such APIs in a cluster environment. |
|||
As well as helping Xen/Mirage, the public cloud API bindings will be very useful to other people in other contexts-- a nice side-effect. |
|||
|Outcomes=1. one or more public cloud API bindings plus examples, in a standalone repo on github; 2. an example mirage app which uses these APIs to spin up a new VM |
|||
|GSoC=yes |
|GSoC=yes |
||
}} |
}} |
||
Line 263: | Line 396: | ||
* More info: http://wiki.xen.org/xenwiki/XenPVSCSI |
* More info: http://wiki.xen.org/xenwiki/XenPVSCSI |
||
{{Comment|[[User:Lars.kurth|Lars.kurth]] 14:14, 23 January 2013 (UTC):}} Should be suitable, but desc needs. Rate in terms of challenges, size and skill. Also kernel functionality is not yet upstreamed. Maybe Suse kernel. |
{{Comment|[[User:Lars.kurth|Lars.kurth]] 14:14, 23 January 2013 (UTC):}} Should be suitable, but desc needs. Rate in terms of challenges, size and skill. Also kernel functionality is not yet upstreamed. Maybe Suse kernel. |
||
}} |
|||
{{project |
|||
|Project=Implement Xen PVUSB support in xl/libxl toolstack |
|||
|Date=01/12/2012 |
|||
|Contact=Pasi Karkkainen <pasik@iki.fi> |
|||
|GSoC=Yes |
|||
|Desc= |
|||
xl/libxl does not currently support Xen PVUSB functionality. Port the feature from xm/xend to xl/libxl. Necessary operations include: |
|||
* Task 1: Implement PVUSB in xl/libxl, make it functionally equivalent to xm/xend. |
|||
* Send to xen-devel mailinglist for review, comments. |
|||
* Fix any upcoming issues. |
|||
* Repeat until merged to xen-unstable. |
|||
* See above for PVUSB drivers for dom0/domU. |
|||
* Xen PVUSB supports both PV domUs and HVM guests with PV drivers. |
|||
* More info: http://wiki.xen.org/xenwiki/XenUSBPassthrough |
|||
{{Comment|[[User:Lars.kurth|Lars.kurth]] 14:14, 23 January 2013 (UTC):}} Should be suitable, but desc needs. Rate in terms of challenges, size and skill. Also kernel functionality is not yet upstreamed. Maybe Suse kernel. |
|||
}} |
|||
{{project |
|||
|Project=Block backend/frontend improvements |
|||
|Date=01/01/2013 |
|||
|Difficulty=Medium |
|||
|Contact=Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> |
|||
|Desc= |
|||
Blkback requires a number of improvements, some of them being: |
|||
* Multiple disks in a guest cause contention in the global pool of pages. |
|||
* There is only one ring page and with SSDs nowadays we should make this larger, implementing some multi-page support. |
|||
* With multi-page it becomes apparent that the segment size ends up wasting a bit of space on the ring. BSD folks fixed that by negotiating a new parameter to utilize the full size of the ring. Intel had an idea for descriptor page. |
|||
* Add DIF/DIX support [http://oss.oracle.com/~mkp/docs/lpc08-data-integrity.pdf] for T10 PI (Protection Information), to support data integrity fields and checksums. |
|||
* Further perf evaluation needs to be done to see how it behaves under high load. |
|||
* Further discussion and issues outlined in http://lists.xen.org/archives/html/xen-devel/2012-12/msg01346.html and https://docs.google.com/document/d/1Vh5T8Z3Tx3sUEhVB0DnNDKBNiqB_ZA8Z5YVqAsCIjuI |
|||
|GSoC=Yes, but we would have to chop them into smaller chunks working with the applicant |
|||
}} |
}} |
||
Line 317: | Line 415: | ||
|GSoC=Yes |
|GSoC=Yes |
||
}} |
}} |
||
{{project |
|||
|Project=HVM per-event-channel interrupts |
|||
|Date=01/30/2013 |
|||
|Contact=Paul Durrant <paul.durrant@citrix.com> |
|||
|Skills=C, some prior knowledge of Xen useful |
|||
|Desc=Windows PV drivers currently have to multiplex all event channel processing onto a single interrupt which is registered with Xen using the HVM_PARAM_CALLBACK_IRQ parameter. This results in a lack of scalability when multiple event channels are heavily used, such as when multiple VIFs in the VM as simultaneously under load. |
|||
Goal: Modify Xen to allow each event channel to be bound to a separate interrupt (the association being controlled by the PV drivers in the guest) to allow separate event channel interrupts to be handled by separate vCPUs. There should be no modifications required to the guest OS interrupt logic to support this (as there is with the current Linux PV-on-HVM code) as this will not be possible with a Windows guest. |
|||
|Outcomes=Code is submitted to xen-devel@xen.org for inclusion in xen-unstable |
|||
|GSoC=yes}} |
|||
=== Xen Hypervisor Userspace Tools === |
=== Xen Hypervisor Userspace Tools === |
||
Line 362: | Line 449: | ||
[[GSoC_2013#xl-to-xcp-vm-motion]] |
[[GSoC_2013#xl-to-xcp-vm-motion]] |
||
|GSoC=Yes |
|||
}} |
|||
{{project |
|||
|Project=VM Snapshots |
|||
|Date=16/01/2013 |
|||
|Contact=<[mailto:stefano.stabellini@eu.citrix.com Stefano Stabellini]> |
|||
|Desc=Although xl is capable of saving and restoring a running VM, it is not currently possible to create a snapshot of the disk together with the rest of the VM. |
|||
QEMU is capable of creating, listing and deleting disk snapshots on QCOW2 and QED files, so even today, issuing the right commands via the QEMU monitor, it is possible to create disk snapshots of a running Xen VM. xl and libxl don't have any knowledge of these snapshots, don't know how to create, list or delete them. |
|||
This project is about implementing disk snapshots support in libxl, using the QMP protocol to issue commands to QEMU. Users should be able to manage the entire life-cycle of their disk snapshots via xl. The candidate should also explore ways to integrate disk snapshots into the regular Xen save/restore mechanisms and provide a solid implementation for xl/libxl. |
|||
[[GSoC_2013#vm-snapshots]] |
|||
|GSoC=Yes |
|GSoC=Yes |
||
}} |
}} |
||
Line 393: | Line 466: | ||
}} |
}} |
||
{{project |
|||
|Project=Lazy restore using memory paging |
|||
|Date=01/20/2014 |
|||
|Contact=Andres Lagar-Cavilla <andres@lagarcavilla.org> |
|||
|Difficulty=Medium |
|||
|GSoC=Yes |
|||
|Desc=VM Save/restore results in a boatload of IO and non-trivial downtime as the entire memory footprint of a VM is read from IO. |
|||
Xen memory paging support in x86 is now mature enough to allow for lazy restore, whereby the footprint of a VM is backfilled while the VM executes. If the VM hits a page not yet present, it is eagerly paged in. |
|||
There has been some concern recently about the lack of docs and/or mature tools that use xen-paging. This is a good way to address the problem. |
|||
|Skills= A good understanding of save/restore, and virtualized memory management (e.g. EPT, shadow page tables, etc). In principle the entire project can be implemented in user-space C code, but it may be the case that new hypercalls are needed for performance reasons. |
|||
|Outcomes=Expected outcome: |
|||
* Mainline patches for libxc and libxl |
|||
}} |
|||
{{project |
|||
|Project=CPUID Programming for Humans |
|||
|Date=02/04/2014 |
|||
|Contact=Andres Lagar-Cavilla <andres@lagarcavilla.org> |
|||
|Difficulty=Easy |
|||
|GSoC=Yes |
|||
|Desc=When creating a VM, a policy is applied to mask certain CPUID features. Right now it's black magic. |
|||
The KVM stack has done an excellent job of making this human-useable, and understandable. |
|||
For example, in a qemu-kvm command-line you may encounter: |
|||
-cpu SandyBridge,+pdpe1gb,+osxsave,+dca,+pcid,+pdcm,+xtpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme |
|||
And in <qemu>/target-i386.c you find a fairly comprehensive description of x86 processor models, what CPUID features are inherent, and what CPUID feature each of these symbolic flags enables. |
|||
In the Xen world, there is a libxc interface to do the same, although it's all hex and register driven. It's effective, yet horrible to use. |
|||
An ideal outcome would have libxl config files and command line absorb a similarly human-friendly description of the CPUID features a user wishes for the VM, and interface appropriately with libxl. Further, autodetection of best CPUID shuold yield a human-readable output to be able to easily understand what the VM thinks about its processor. |
|||
Finally, interfacing with libvirt should be carefully considered. |
|||
CPUID management is crucial in a heterogeneous cluster where migrations and save restore require careful processor feature selection to avoid blow-ups. |
|||
|Skills= A good understanding of C user-land programming, and the ability to dive into qemu/libvirt (for reference code and integration), as well as libxc and libxl (for implementation). |
|||
|Outcomes=Expected outcome: |
|||
* Mainline patches for libxl |
|||
}} |
|||
=== PCI Pass-through improvements === |
=== PCI Pass-through improvements === |
||
Line 529: | Line 556: | ||
[[Category:GSoC]] |
[[Category:GSoC]] |
||
[[Category:GSoC 2014]] |
|||
[[Category:Developers]] |
[[Category:Developers]] |
||
[[Category:Index]] |
[[Category:Index]] |
||
[[Category:Project]] |
[[Category:Project]] |
||
[[Category:Archived]] |
|||
[[Category:Internships]] |
|||
[[Category:Transient]] <!-- as if not maintained it becomes stale --> |
[[Category:Transient]] <!-- as if not maintained it becomes stale --> |
Latest revision as of 18:07, 2 February 2017
The Xen Project is a Linux Foundation collaborative project that develops the
- Xen Hypervisor (for x86 and ARM)
- The XAPI toolstack
- Mirage OS
The project also has excellent relationships with its upstreams (Linux Kernel, the BSDs, QEMU and other projects) and upstreams such as Linux distributions. This is reflected in the project list, which contains many interesting cross-project development projects for students.
GSoC and Xen
This page is used to list project ideas for Google Summer of Code (GSOC) 2014.
Key GSoC resources
Google Summer of Code 2014 is On (see [1]). The Xen Project has applied as a Mentoring Organization. Stay posted.
Finding a project that fits you
This page lists Xen Project development projects for GSoC that can be picked up by anyone! If you're interesting in hacking Xen Project code and want to become a part of our friendly developer community this is the place to start! Ready for the challenge?
To work on a project:
- Find a project that looks interesting (or a bug if you want to start with something simple)
- Send an email to the relevant mailing list (see Developer Mailing Lists) and let us know if you are interested in starting to work or applying on a specific project.
- Post your ideas, questions, RFCs to the relevant mailing list sooner than later so you can get comments and feedback.
You have your own project idea: no problem!
- If you have your own project idea, outline what you are trying to do on the mailing list. If you know the right list, post your project idea on mailing list. Failing that post on xen-devel and we can redirect you to the right list. Make sure you add GSoC 2014 to the subject line.
It is a good idea to ...
The Xen Project has also participated in the Gnome Outreach Program for Women (OPW) in the past. One of the things we learned by participating in OPW is that you will be more successful, happier and get more out of participating in student programs such as GSoC, if you do a bit of prep-work before writing an application. Here is some stuff you can do:
- Contact your mentor early and get to know him or her
- If the Xen Project is accepted into GSoC, start hanging out on our IRC channel. You can use the #xen-opw IRC channel on freenode.net for now (if accepted, we will create a GSoC channel)
- You may want to ask the mentor for a couple of small bitesize work-items (such as reviewing someones patch, a bitesize bug, ...) and start communicating on the relevant mailing list. That helps you become familiar with our development process, the mentor and other community members and will help you chose the right project and help you decide whether the Xen project is for you.
- Note that quite a few Xen maintainers used to be GSoC students once. Feel free to ask community dot manager at xenproject dot org to put you in touch with them if you have questions about their experience.
- Any work you submit before applying for a project should be based on xen-unstable development tree, if the project is Xen Hypervisor and/or tools related. Linux kernel related patches should be based on upstream kernel.org Linux git tree (latest version). XAPI and Mirage OS patches should be based on the right codeline too. Check out the navigation by audience section on the left to find resources.
More resources
Quick links to changelogs of the various Xen related repositories/trees: Please see XenRepositories wiki page!
Before to submit patches, please look at Submitting Xen Patches wiki page and the relevant Xen Project team page. This will contain more information.
If you have new ideas, suggestions or development plans let us know and we'll update this list!
Aspiring Students
- Please contact the mentor and CC the most appropriate mailing list
- Get a bite-size task from the mentor before the application starts
- If you feel comfortable with an idea, please put your name to an idea using the following format
{{project ... |Review=(delete as addressed) * {{Comment|~~~~:}} I am interested in this idea ... (note that you may also want to link to the e-mail thread with the mentor)
- You will need to request write access to the wiki by filling out this form
Applying for GSoC
Note that we will update this section when more student information on melange is available, to make it easier for you to find information. And of course assuming that the Xen Project will be accepted into GSoC. |
To apply for a project, follow the steps outlined on
- melange
- We do have our own GSoC Student Application Template form
GSoC Projects that were accepted in 2014
Implement Xen PVUSB support in xl/libxl toolstack
|
Lazy restore using memory paging
|
- dushyant Hi, I am working on this project.
HVM per-event-channel interrupts
|
Mirage OS cloud API support
|
Parallel xenwatch kthread
|
List of peer reviewed Projects
Domain support (PVOPS and Linux)
OVMF Compatibility Support Module support in Xen
|
- sdytlm Hi, I am interested to work on this project.
Utilize Intel QuickData on network and block path.
|
Xen block backend/frontend multiqueue support
|
Enabling the 9P File System transport as a paravirt device
Peer Review Comments(delete as addressed)
|
Xen Hypervisor Userspace Tools
CPU/RAM/PCI diagram tool
|
KDD (Windows Debugger Stub) enhancements
|
CPUID Programming for Humans
|
Mirage OS
Create a tiny VM for easy load testing
|
Fuzz testing Xen with Mirage
|
Mirage OS web stack testing
|
List of projects that need more work
Domain support (PVOPS and Linux)
Implement Xen PVSCSI support in xl/libxl toolstack
|
Xen Hypervisor
Introducing PowerClamp-like driver for Xen
|
Xen Hypervisor Userspace Tools
Refactor Linux hotplug scripts
|
XL to XCP VM motion
|
Advanced Scheduling Parameters
|
PCI Pass-through improvements
Allowing guests to boot with a passed-through GPU as the primary display
|
Improve PCIe Advanced Error Reporting (AER) handling for passed-through devices
|
XAPI
DRBD Integration
|
New Project Ideas
Please add new project ideas here, following
Conventions for Projects and Project Mentors
Rules and Advice for Adding Ideas
- Be creative
- Add projects into New Project Ideas or improve projects in Project Ideas that Need Review or more work through review comments.
- Use the {{GSoC Project}} template to encode ideas on this page. Please read the Template Documentation before you do so.
- Be specific: what do you want to be implemented; if at all possible provide an indication of size and complexity as described above to make it easier for a student to choose ideas
- Check that the project meets the GSoC Program Goals
- If you are willing to mentors those ideas, add your name and email to the idea.
- Aspiring mentors should introduce themselves on the most appropriate Xen Project mailing list
Peer Review Goals
We strongly recommend and invite project proposers and project mentors to review each others proposals. When you review, please look out for
- Can a student get going and started with the information in the project description
- Are any unstated assumptions in the proposal, is there undefined terminology, etc. in the proposal
- Can the project completed in 3 months (assume that one month is needed for preparation)
- Does the project meet Google Summer of Code goals, which are
- Create and release open source code for the benefit of all
- Inspire young developers to begin participating in open source development
- Help open source projects identify and bring in new developers and committers
- Provide students the opportunity to do work related to their academic pursuits (think "flip bits, not burgers")
- Give students more exposure to real-world software development scenarios (e.g., distributed development, software licensing questions, mailing-list etiquette)
Peer Review Conventions
The {{GSoC Project}} template used to encode GSoC projects, contains some review functionality. Please read the Template Documentation before you add a template, also please use the conventions below to make comments.
|Review=(delete as addressed) * {{Comment|~~~~:}} Comment 1 * {{Comment|~~~~:}} Comment 2
Choosing Projects
We have a bi-weekly mentor meeting overlooked by our program management team, which are a core team of 2-3 mentors and a program administrator. This group will work with mentors to ensure that project proposals are of good quality and whether mentors are engaging with the program management team and students in the weeks before the application period ends.